
OXDBS – Extension of a native XML Database System with
Validation by Consistency Checking of OWL-DL Ontologies

Christoph P. Neumann
cpn@cs.fau.de

Thomas Fischer
tom@cs.fau.de

Richard Lenz
rl@cs.fau.de

Institute of Computer Science 6 (Data Management)
Friedrich-Alexander University

Erlangen, Germany

ABSTRACT
Native XML database systems provide mature technology for
persisting XML data and documents. Ontologies are often
represented as XML-based documents like OWL-DL ontolo-
gies which allow for semantic consistency checking by formal
description logic. Artificial intelligence provides reasoners
as IT-support for consistency checking. Currently there ex-
ists no native XML database system which integrates logic
reasoning for semantic consistency as addition to syntactic
schema validation. The OXDBS project integrates a reasoner
into a native XML database system, thus, allowing to assert
consistency of ontological data at the most basic tier in an
application environment.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—enhancement ; H.2.m [Database Man-
agement]: Miscellaneous; J.3 [Computer Applications]:
Life and Medical Sciences—medical information systems;
K.6.4 [Management of Computing and Information
Systems]: System Management—quality assurance

General Terms
Design, Human Factors

Keywords
Semantic Web and Databases, Logic and Databases, Medical
Systems, Data Quality and Semantics

1. MOTIVATION AND CHALLENGES
The core task of a database management system (DBMS)

is to provide means that support the preservation of database
consistency [1]. Absolute correctness of data cannot be guar-
anteed. One of many reasons for that is that our means
for specifying integrity rules are not expressive enough to
model real world conditions precisely. Another reason is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IDEAS 2010, August 16-18, Montreal, QC [Canada]
Editor: Bipin C. DESAI
Copyright©2010 ACM 978-1-60558-900-8/10/08 $10.00.

that only some types of faulty data can actually be detected
automatically. Nevertheless, database management systems
traditionally provide powerful mechanisms that contribute
to preserve data quality in a database and help to prevent
faulty data even to enter the database. This requires a pre-
cise definition of what is considered correct from a database
perspective. Typically, this is done by enforcing Atomicity,
Consistency, Isolation and Durability (the “ACID” proper-
ties) for database transactions. Transaction management is
not only to preserve operational semantics or to provide fault
tolerance but also the essential assumption is that database
transactions preserve semantic database consistency. If the
database only contains results of completed transactions,
then the database is considered consistent; thus, the transac-
tion programmer is responsible for consistency preservation.
Semantic integrity constraints help to prevent faulty trans-
action programs to commit, which (at least to some degree)
takes the burden of semantic consistency checking from the
application programmer.

Nowadays, a large portion of commonly used data is not as
strictly structured as in traditional relational database sys-
tems. XML1 has emerged as the syntactic standard for rep-
resenting semi-structured data. Along with its widespread
use both native XML databases as well as adaptations of
relational database management systems have been devel-
oped. These approaches typically allow for syntactic consis-
tency checking. Semantic checking of XML documents, how-
ever, is not part of today’s XML database systems, though
this clearly would greatly contribute to database consistency,
which is the traditional mission of a DBMS.

Ontology technologies and XML technologies have gained
a common ground: with OWL2 as an XML-based approach
to ontologies. Although OWL has become popular as Seman-
tic Web technology, it has been adopted by the healthcare
community [2, 3, 4]. For example, the OWL-based ontology
foundational model of anatomy [5] has over 75,000 concepts,
being under development since 1994. Automated tools are
essential to check the consistency of large ontologies. OWL-

DL reasoners provide automated detection of inconsistencies,
which are very difficult to identify manually by humans.

Native XML database systems provide mature technology
for persisting XML data and documents. The goal of the
ontological XML database system (OXDBS) is to integrate a
semantic reasoner into a native XML-DBMS, thus asserting
consistency of ontological data at the most basic software

1eXtensible Markup Language
2Web Ontology Language

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext
© ACM, 2010. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in IDEAS '10 Proceedings of the Fourteenth International Database Engineering & Applications Symposium, 2010http://doi.acm.org/10.1145/1866480.1866502

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

tier in an application environment. The OXDBS is based
on available free or open-source software. The idea of the
project is to bridge between database technology and artifi-
cial intelligence technology and to generalize syntactic val-
idation (XML Schema) and semantic consistency checking
(OWL-DL) in an OWL-aware XML-DBMS architecture.

2. BACKGROUND
As a means of data integration, domain ontologies are

used as unique semantic reference. A principle in the con-
text of description logics is the differentiation between termi-
nological box (TBox) and assertional box (ABox). Roughly
speaking, the TBox contains “terms”, which is synonymous
to “types”, “class”, or “concepts”. The TBox also contains re-
lations between concepts and concepts. The ABox contains
“assertions”, which is synonymous to “instances”, “objects”,
or “individuals”. The ABox also contains relations between
individuals and concepts.

If OWL is used as ontology language, the TBox essentially
represents the domain ontology. A TBox can be reused for
multiple ABoxes, e.g. from different institutions that share
a common conceptualization. To ensure semantic compati-
bility in a system environment, capturing any data requires
an ontological commitment [6], which is gained by repre-
senting facts in form of an ABox being consistent to the
shared TBox. Yet, concerning first-order logic, the distinc-
tion between TBox and ABox is not significant. Still, from
an inference implementation point of view, the complexity
of the TBox can greatly affect the performance of a given
decision-procedure, independently of the ABox. Again, from
a human point of view, the distinction is important because
the responsible actors for TBox and ABox are distinct in
most real-world scenarios.

There are different kinds of description logics, which can
roughly be distinguished by the operators that are allowed.
There is an informal naming convention, in which the ex-
pressivity is encoded in the label for a logic. For example,
OWL-DL corresponds to SHOIN (D) description logics. In
OWL, as it is derived from RDF3, knowledge is represented
in form of triples, which are subject-predicate-object expres-
sions. OWL data types may range over RDF literals or simple
types defined in accordance with XML Schema data types.

3. OBJECTIVES AND METHODS
This paper initially provides a description of a common

data production scenario based on available ontology tools.
The limitations of this real-world scenario will be discussed.
The objective of the OXDBS approach is to put consistency
checking universally into the data tier of the application en-
vironment in order to foster data quality by preventing in-
consistent data and to reduce uncontrolled data redundancy.

As a proof-of-concept, the OXDBS is implemented by freely
available XML database systems and OWL-DL reasoners.
The integration of semantic consistency checking should not
annihilate the syntactic validation facilities. The objective
is that the database mode in which OWL-DL consistency
checking is performed can be switched on by configuration,
and if switched off the database must behave as without our
extension. After evaluation and selection of available soft-
ware components, both components are analyzed: The pri-
mary focus in XML database analysis is the extraction of the

3Resource Description Framework

validation mechanics inside the database architecture. The
focus in reasoner analysis is to determine any supported in-
terfaces to the description logics system, for the purpose of
component integration.

The final step is the implementation of the OWL-validation
module and its integration into the selected database. There
are two basic reasons for complexity of this task: There ex-
ist several external interfaces and query languages for XML

database systems. Depending on the interface, there exist
different approaches to the validation mechanics in the cho-
sen native XML database. In addition, the error handling
and notification depends on the different database interfaces.
In order to achieve comprehensive OWL validation support
a deep understanding of the XML database architecture had
to be gained.

4. USE-CASE SCENARIO
Domain experts and knowledge engineers to formalize do-

main knowledge in form of a TBox use an ontology editor.
Taking clinical environments as example, end-users like as-
sistant medical technicians or even secretaries provide case
data at run-time, forming an ABox. Healthcare IT infras-
tructure traditionally is a workstation environment and in
case of OWL-based data representation, the data is orga-
nized in files.

The most prominent ontology editor is Protégé, which
stems from medical informatics research [7] and Protégé sup-
ports OWL. Yet, Protégé is just one of an arbitrary set of
possible XML editors for OWL editing, and hence only one
source of OWL document change. If applications instead of
humans generate data, they would be required to integrate
reasoners for consistency checking each on their own.

The data production in clinical scenarios suffers from the
fact that capturing data is operationally separated from
checking the consistency in regard to the ontology. Data
is captured by desktop editors and stored via file systems;
yet, to check consistency requires to apply a reasoner in
form of a separate tool, with most reasoners being applica-
ble by command-line. The consistency checking is a task
that is assigned to end-users, it is not integral part of the
data storage and on that account, it is often left out. In fig. 1
an outline is provided: some end-user (the actor on the left
side) stores new data but forgets to check the consistency.
Problems occur if his or her change left the file inconsistent
and another end-user (the actor on the right side) opens the
file, edits it, and responsibly checks it. Although the second
end-user’s changes are correct, he gets errors, which will not
be resolvable by him or her.

In an ideal scenario, the consistency checking is part of
the storage system, as it is outlined in fig. 2. The editor
does not use the file system but, for example, put and get
commands to store the OWL contents in a central XML-
DBS. The database integrates the consistency checking and
prevents users from storing inconsistent data. Such prevents
friction between end-users and prevents anomalies with con-
current changes.

In fact, some resolution that users instinctively apply to
deal with concurrency issues is file replication, which leads
into uncontrolled data redundancy, and problems of file syn-
chronization. Notably, it is not handy for users to store files
in XML databases just for synchronization purpose if the
database does not perform consistency checks: Then each
user would have to temporarily store files in his or her file

save

store

open

Reasoner

load
check

XML

Editor

XML

Editor

check

check

Reasoner

Figure 1: The real-world scenario

XML Editor

network

DBS Client

save

store

put

XML-DBS

check consistency

+

store document

open

get

load

Figure 2: The idealized scenario

system just to apply the reasoner on command-line, before
he or she commits the data to the database. The only fea-
sible way, is to integrate consistency checking into the data
tier of the application environment.

5. MATERIALS
Two basically required off-the-shelf components are 1) an

XML database system and 2) a OWL-DL reasoner. The
OXDBS focus lies on native XML database systems in con-
trast to XML enabled database systems.

The criteria catalog for the selection of a native XML

database systems has been composed of: 1) open-source,
2) support for large-sized documents, 3) XQuery/XUpdate
interface, 4) syntactic XML schema validation. The eXist
[8] database system fulfills all criteria. The candidates Ba-
seX and Apache Xindice were dismissed, because they do
not include syntactic XML schema validation facilities. In
addition, Xindice supports only small to medium sized doc-
uments. In conclusion, eXist in version 1.4 was selected as
foundation for OXDBS.

The criteria catalog for an adequate reasoner is composed
of: 1) free of charge, 2) provides consistency checking as
black box functionality, 3) separated consistency checking
of TBox and ABox is possible, 4) provides programming in-
terface or network interface, and 5) supports all data types
from XML Schema. The FaCT++ reasoner, implemented in
C++, does not support XML Schema data types completely.
Pellet reasoner, implemented in Java, and RacerPro, imple-
mented in Lisp, both fulfill all criteria. They support all
XML Schema data types and the DIG protocol [9], that is a
standard interface for reasoning engines. In addition, Rac-
erPro provides a powerful New RacerPro Query Language
(nRQL). With jracer, there exists a Java API based on
nRQL. In conclusion, all three candidate reasoners actually
provide a mature implementation and adequate functional-
ity; the RacerPro in version 1.9.0 was finally selected for
OXDBS.

6. OXDBS
The OXDBS is a combination of a patched eXist DBS,

the OWL validation module, and a RacerPro reasoner. An
integral objective is that the semantic consistency checking
can be switched on by configuration as a system extension,
and that the former behavior of the database is preserved.
Thus, the eXist configuration file must be complemented

with an OWL validation mode. In addition, the information
necessary to connect to the OWL-DL reasoner will also be
configurable by the extended eXist configuration file.

For system extension, the validation mechanics inside the
eXist architecture are analyzed. Unfortunately there are
two separate validation facilities in eXist, which must both
be adopted for OWL consistency checking. Both facilities
will be described, as well as the OXDBS insertion of a dele-
gation to a singular OWL validation module for both execu-
tion paths. A drawback emerged from the eXist internals,
which prevents performant consistency checking only with
the changed facts or concepts but requires the OXDBS ex-
tension to apply an expensive consistency checking with the
complete ontological information, with all concepts and facts
from TBox and ABox, for each data change.

Finally, the interaction between the OWL system exten-
sion inside the database and the OWL reasoner is described.
Often TBox and ABox are stored in a single OWL docu-
ment, but in an error case, being caused by an inconsistent
document status, the reasoner provides information whether
the inconsistency affects the TBox or the ABox. For the er-
ror handling, in regard to the transactional behavior, simple
Boolean information is effective and the error origin in TBox
vs. ABox is irrelevant. Nevertheless, for the end-user the
TBox vs. ABox differentiation is very relevant in the case of
an error. Unfortunately, the propagation of such error infor-
mation is not possible with the available eXist architecture,
because the validation return value is limited to a Boolean
value.

6.1 Configuration of the Validation Subsystem
There are three different modes for the validation in eXist:

no, yes, and auto. The yes mode is most restrictive: every
file is tested for validity, implying that a file without schema
information will always be rejected because validation is not
possible. The no mode is least restrictive: every well-formed
file is accepted. The auto mode tests files for validity if the
file provides schema information but accepts files without
schema information if they are well-formed. The mode can-
not be changed during run-time.

The parsing of the eXist configuration file is based on an
XML Schema file4. In order to extend the configuration, the
attribute mode of element validation is just complemented
with an enumeration entry owl. For generic configurabil-

4Being available as schema/conf.xsd in the eXist sources.

ity of the reasoner connection information, two attributes
ip and port are added to the validation element. The
class org.exist.util.Configuration parses the configura-
tion file and translates the values into a hash map, which
can be accessed by the subsystems at run-time.

In owl mode, the DBS will delegate every file for consis-
tency checking to the new OWL validation module. Yet, the
original behavior is preserved and the mode can be changed
back to yes/no/auto. Besides the global configuration, the
validation mode can be set for each collection individually5.
Thus, it is possible to have all validation modes available
at run-time and it seems good practice to use a dedicated
collection for OWL databases.

6.2 XML Schema Validation in eXist
This section provides a short overview over the eXist vali-

dation facilities. There are several remote interfaces that are
supported by eXist which allow to store XML content into
the database, which are outlined in fig. 4. Support for XML-

RPC and SOAP is implemented, both being flavors of XML-
based remote invocation standards, in which the XML con-
tent is the payload as the parameter of a function call. The
WebDAV and REST interface apply simple HTTP put and get
of XML content, without an additional invocation wrapper,
but instead use URL path segments that are dispatched in
order to address XML databases. The eXist “AtomService”
implements the Atom Publishing Protocol (AtomPub) and
supports a binding of XML content in form of the Atom Syn-
dication Format (ASF). Any of REST, XML-RPC, WebDAV,
SOAP, and Atom interface accepts XQuery and XUpdate ex-
pressions: Both types of expressions can be put like content
documents – with the difference that dedicated URL path
segments are used to indicate XQuery and XUpdate service-
endpoints that will interpret and execute the requests.

In addition it is possible to integrate the eXist database
into applications as an embedded database. In this case, the
standardized XML:DB API [10] for XML databases provides
programmatic access.

Independent of the remote interface that is used to store
XML content, the implicit validation of XML Schema is in-
ternally handled by the Collection.validateXMLResource(..).
The various remote interfaces and their execution paths from
the remote access layer to the Collection class are outlined in
fig. 4. Whether or not eXist implicitly applies XML Schema
validation is part of the configuration, as explained.

In contrast to the implicit validation, users are allowed to
request explicit validation of stored XML content. Currently,
only the XML:DB API and the XML-RPC of eXist provide this
functionality; additionally, the XQuery standard also pro-
vides a validate command with an XML database locator as
parameter. The execution paths for explicit validation are
outlined in fig. 3. Independent of the technical origin of an
explicit validation request, the internal class which has to
handle such validation differs from implicit validation: The
responsible class for explicit validation always is Validator
with its validate(..) method, completely autonomous from
the Collection class for implicit validation.

The common ground of Collection.validateXMLResource(..)
and Validator.validate(..) is that both will use an XMLReader
object from a SAXParser6. The basic idea in the OXDBS pro-

5The individual configuration for collections is applied by
an collection.xconf file inside each collection.
6The eXist database relies on the Xerces XML parser for

Server Mode Embedded Mode

RpcServer

RpcConnection

isValid()

Validator

validate()

InteractiveClient

XML-RPC

access

isValid()

XML:DB

API

process()

LocalValidationService

validateRessource()

validate()

XQuery Request

Validation

eval()

validate()

(any access

or API)

...

Figure 3: Execution paths for explicit validation

totype implementation is now to substitute the SAXParser
with a delegation to an OWL module that handles the inter-
action with an OWL-DL reasoner.

6.3 Limitations
There are several limitations in our OXDBS prototype im-

plementation caused by eXist architecture limitations. The
implicit validation only takes place if an XML document is
stored into the database. If documents are changed by us-
ing XQuery-Update extension or XUpdate expressions the
implicit validation is not performed.

The syntactic validation mechanism, being present in eX-
ist, externalizes the whole XML document and delegates it
to the XML Schema validator. The natural implementation
of all OWL-DL reasoners provides sophisticated caching of
ABox and TBox information to speed-up reasoning perfor-
mance in the case of selective changes. On that account, rea-
soners provide interfaces to inform them only about changed
concepts or individuals. However, because eXist only pro-
vides access to the complete XML document in the context of
validation, the prototype externalizes the whole OWL docu-
ment for delegation to the reasoner. The reasoner facilities
can only be instrumented with full performance, if an OWL

change set would be provided by an XML database to the
OWL validation module.

6.4 OWL Consistency Checking Integration
The owlconsistency module handles the consistency check-

ing of OWL-DL documents. The class OWLChecker is the
facade of the module. Initially, the provided content in
question is externalized by ExternalizedDocument into a tem-
porary file as preparation for its delegation to a reasoner.
Subsequently, the OWLChecker accesses the configuration
information for ip and port in order to instantiate class
OWLReasoner. In class OWLChecker, all technical excep-
tions which occur in the subsystem are handled and con-
verted into EXistException of the eXist system. All excep-
tions that are caused by the indication of inconsistencies are
converted into a Boolean conclusion as the return value of

XML Schema validation.

Server Mode Embedded Mode

RpcServer

RpcConnection

parse()

Collection

InteractiveClient

XML-RPC

access

parse() process()

LocalValidationService

store()

AtomProtocol

REST

access

RestServer

doPut()

WebDAV

service()

WebDAV

access

Put

doPut()/doPost()

AdminSoapBindingImpl

AdminSoapBindingSkeleton

SOAP

access

store()

store()

process()

validateXMLResource()

AtomServices

access

XML:DB

API

Figure 4: Execution paths for implicit validation

the OWLChecker.validate(..) method.
The class OWLReasoner is an abstraction of the actual rea-

soner. The current implementation uses the JRacer client li-
brary to access the services of a RacerPro server from Java.
The JRacer class RacerServer provides the functionality to
send nRQL commands to RacerPro. If a consistency er-
ror occurs, it is propagated as OWLException that allows to
distinct ABox or TBox origin. The nRQL commands being
successively sent are as follows:

1. (full-reset)

2. (owl-read-file file)

3. (check-tbox-coherence)

4. (abox-consistent-p)

The command full-reset invalidates any cached infer-
ence state of the reasoner. The owl-read-file does not im-
plicate any consistency checks but RacerPro will initialize its
internal data structures with the provided OWL contents. To
begin the consistency checking, the check-tbox-coherence

command will cause RacerPro to check the TBox. The re-
turn value contains a list of undecidable concepts; an empty
list indicated by NIL is the happy case. In any other case,
the check is aborted and an OWLException is thrown. If the
TBox is consistent, the command abox-consistent-p will
cause RacerPro to check the ABox against the TBox. The
return value is either T or NIL; this time NIL indicates the
inconsistent case. Again, an OWLException would be prop-
agated. An OWL document is consistent, if and only if no
OWLException is thrown. The OWLChecker facade trans-
lates the OWLException into a Boolean conclusion, as it is
required by the eXist architecture.

7. RELATED WORK
A few similar approaches can be located in the literature

and in the World-wide Web. However, an approach like the
OXDBS with the focus on integration of an XML-DBS and
OWL-DL consistency checking could hardly be found.

Triple stores [11] are databases for RDF triples. There are
several implementations for triple stores, like Sesame, Jena
TDB, or AllegroGraph. Yet, triple stores focus on provid-

ing querying facilities like SPARQL7 [12] and do not provide
OWL-DL inference and therefore no consistency checking.
Besides, triple stores which have been built from scratch,
like Jena TDB, are non-transactional and do not provide
ACID properties.

Oracle Database, with its latest release of 11g, provides
the Semantic Technologies framework [13] which supports
RDF- and OWL-based data modeling, and query function-
ality like SPARQL support. Yet, Oracle does not integrate
semantic consistency checking by a reasoner. Furthermore,
Oracle is neither a native XML database system, nor does
Oracle provide adoptable XML validation facilities.

The XTC [14] is a research prototype with a clean and
modular architecture. Yet, it is not available as open-source.
XQuery is available in XTC but not fully supported, neither
is XUpdate. An integration of syntactic XML Schema vali-
dation is also not available. However, the XTC database is
implemented very modular and hence the XTC promises a
sound foundation for a reference architecture.

8. FUTURE WORK
If the assumption about database transactions, to pre-

serve semantic database consistency, ought to be achieved
for XML database systems, a reference architecture is re-
quired in which syntactic validation (XML Schema) and for-
mal semantic reasoning (OWL-DL) is generalized in an au-
tonomous validation subsystem. A flexible mechanism for
validation reporting and error propagation is required, not
only controlling the transactional behavior but also allow-
ing the notification of neighbor systems about the validation
or consistency problem. To integrate various validators or
reasoners as a library, a plug-in design for the validation is
necessary. An outline of such architecture is provided in
fig. 5; the focus lies in the validation subsystem.

In order to improve validation performance, a reduced set
of changes should be made available to the validation sub-
system instead of the whole XML document. The change
set isolation would depend on the validation technology and

7Recursive acronym for“SPARQL Protocol and RDF Query
Language”

Transaction

Subsystem

X
M

L
:D

B

Concurrency

Mgmt

Recovery

Mgmt

Storage

Subsystem
Buffer Mgmt

I/O Mgmt

Attributed Tree Subsystem

Access Path

Mgmt

Node

Mgmt

XML Core

Subsystem

X
U

p
d

a
te

X
Q

u
e
ry

Validation

Subsystem

Validation

Reporting

Change Set

Isolation

X
S

L
T

RDF/OWL

Subsystem

S
P

A
R

Q
L

D
IG

S
W

R
L

Validator

Plugging

Neighbor System

Access Layer

D
O

M
/S

A
X

R
D

F
S

+
+

X
M

L
-R

P
C

R
E

S
T

S
O

A
P

W
e
b
D

A
V

Figure 5: Reference architecture for a native XML-
DBS with a generalized validation subsystem

would be different for XML Schema or OWL-DL. For OWL-

DL purposes, any XML change needs to be set into the con-
text of a changed XML structure for either a concept from
the TBox or an individual from the ABox.

As a basis for such architecture, the eXist database is not
adequate. The eXist implementation fails in regard to a
modular architecture. Rather it is characterized by lots of
code redundancy in which similar concepts are repeated in
varieties of code and classes.

9. CONCLUSION
This paper has presented the OXDBS, which is a native

XML-DBMS that is extended by a reasoner for OWL-DL data.
A use-case scenario for healthcare infrastructure is provided
which traditionally is a workstation environment. It requires
the integration of a reasoner, beyond mere syntactic vali-
dation, to provide consistency checking as formal semantic
validation of OWL-DL files being stored inside a database.

The OXDBS prototype is based on available free or open-
source software and the OXDBS prototype is considered as
a proof-of-concept. A criteria catalog is provided for native
XML database systems and OWL-DL reasoners. Available
software components have been evaluated. The eXist DBS

as well as the RacerPro reasoner have been selected as a
basis of the OXDBS prototype.

The OXDBS bridges a gap between XML database research
and the field of artificial intelligence. The approach has sev-
eral advantages. Both research domains have their own field
of expertise, which are the ACID support for databases and
high-performance inference for artificial intelligence. The
OXDBS approach fosters their autonomous evolution but
aims for integration standards. In the future, a reference
architecture for native XML database systems is required,
which defines the validation facility as an autonomous sub-
system and formalizes the necessary interaction and depen-
dencies to other XML-DBS subsystems as well as validation
reporting in form of an open standard.

10. REFERENCES
[1] B. Bhargava and L. Lilien. Enforcement of data

consistency in database systems. Sadhana,
11(1):49–80, 1987.

[2] Christine Golbreich and Ian Horrocks. The OBO to
OWL Mapping, GO to OWL 1.1! In Christine
Golbreich, Aditya Kalyanpur, and Bijan Parsia,
editors, OWLED, volume 258 of CEUR Workshop
Proceedings. CEUR-WS.org, 2007.

[3] V. Kashyap and A. Borgida. Representing the UMLS
semantic network using OWL. In Proceedings of the
2nd International Semantic Web Conference, pages
1–16. Springer, 2003.

[4] L.F. Soualmia, C. Golbreich, and S.J. Darmoni.
Representing the MeSH in OWL: Towards a
semiautomatic migration. In Proceedings of the KR
2004 Workshop on Formal Biomedical Knowledge
Representation, pages 81–87, 2004.

[5] C. Golbreich, S. Zhang, and O. Bodenreider. The
foundational model of anatomy in OWL: Experience
and perspectives. Web Semantics: Science, Services
and Agents on the World Wide Web, 4(3):181–195,
2006.

[6] Nicola Guarino. Formal ontology and information
systems. In Nicola Guarino, editor, Proceedings of the
1st International Conference on Formal Ontologies in
Information Systems (FOIS’98), pages 3–15, Trento,
Italy, June 1998. IOS Press.

[7] J.H. Gennari, M.A. Musen, R.W. Fergerson, W.E.
Grosso, M. Crubézy, H. Eriksson, N.F. Noy, and S.W.
Tu. The evolution of Protégé: an environment for
knowledge-based systems development. International
Journal of Human-Computer Studies, 58(1):89–123,
2003.

[8] Wolfgang Meier. eXist: An open source native XML
database. Web, Web-Services, and Database Systems,
pages 169–183, January 2003.

[9] Sean Bechhofer. The DIG Description Logic Interface:
DIG/1.1. http://dig.sourceforge.net/, February
2003.

[10] Andreas Laux and Lars Martin. XUpdate working
draft. http://xmldb-org.sourceforge.net/xupdate/
xupdate-wd.html, September 2000.

[11] J. Broekstra, A. Kampman, and F. Van Harmelen.
Sesame: An architecture for storing and querying
RDF data and schema information. Spinning the
Semantic Web: Bringing the World Wide Web to Its
Full Potential, page 197, 2003.

[12] J. Perez, M. Arenas, and C. Gutierrez. Semantics and
Complexity of SPARQL. The Semantic Web – ISWC
2006, pages 30–43, 2006.

[13] Oracle. Oracle Semantic Technologies Overview.
http://download.oracle.com/docs/cd/B28359_01/

appdev.111/b28397/sdo_rdf_concepts.htm,
September 2009.

[14] Theo Härder, Christian Mathis, Sebastian Bächle,
Karsten Schmidt, and Andreas M. Weiner. Essential
Performance Drivers in Native XML DBMSs. In
Current Trends in Theory and Practice of Computer
Science (SOFSEM 2010), volume 5901 of LNCS,
pages 29–46. Springer, 1 2010.

http://dig.sourceforge.net/
http://xmldb-org.sourceforge.net/xupdate/xupdate-wd.html
http://xmldb-org.sourceforge.net/xupdate/xupdate-wd.html
http://download.oracle.com/docs/cd/B28359_01/appdev.111/b28397/sdo_rdf_concepts.htm
http://download.oracle.com/docs/cd/B28359_01/appdev.111/b28397/sdo_rdf_concepts.htm

	Motivation and Challenges
	Background
	Objectives and Methods
	Use-Case Scenario
	Materials
	OXDBS
	Configuration of the Validation Subsystem
	XML Schema Validation in eXist
	Limitations
	OWL Consistency Checking Integration

	Related Work
	Future Work
	Conclusion
	References

