
Bachelorarbeit

Konzeption und Implementierung
einer Teilnehmerverfolgung

für verteilte aktive Dokumente
auf Basis Peer-to-Peer-basierter

File Sharing Protokolle
Hristiyan Pehlivanov

Lehrstuhl für Informatik 6
(Datenmanagement)

Department Informatik
Technische Fakultät

Friedrich Alexander-
Universität

Erlangen-Nürnberg

..

........
.......
.......

...

.............................

........
.......
..

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

.

...........

...........

...........
...........

............
..........

............
..........

.............
.........

..............
.......

................
.....

....................
..

......................
......................

......................
......................

.....................

.....................

......................

......................

......................

......................

......................

Konzeption und Implementierung
einer Teilnehmerverfolgung

für verteilte aktive Dokumente
auf Basis Peer-to-Peer-basierter

File Sharing Protokolle

Bachelorarbeit im Fach Informatik

vorgelegt von

Hristiyan Pehlivanov

geb. 22.02.1988 in Russe

angefertigt am

Department Informatik
Lehrstuhl für Informatik 6 (Datenmanagement)

Friedrich-Alexander-Universität Erlangen-Nürnberg

Betreuer: Univ.-Prof. Dr.-Ing. habil. Richard Lenz
Dipl.-Inf. Christoph P. Neumann

Beginn der Arbeit: 03.05.2010
Abgabe der Arbeit: 30.09.2010

Erklärung zur Selbständigkeit

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der
angegebenen Quellen angefertigt habe und dass diese Arbeit in gleicher oder ähnlicher
Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer
Prüfungsleistung angenommen wurde. Alle Ausführungen, die wörtlich oder sinngemäß
übernommen wurden, sind als solche gekennzeichnet.

Der Universität Erlangen-Nürnberg, vertreten durch den Lehrstuhl für Informatik 6
(Datenmanagement), wird für Zwecke der Forschung und Lehre ein einfaches, kostenlo-
ses, zeitlich und örtlich unbeschränktes Nutzungsrecht an den Arbeitsergebnissen der
Bachelorarbeit einschließlich etwaiger Schutzrechte und Urheberrechte eingeräumt.

Erlangen, den 30.09.2010
(Hristiyan Pehlivanov)

Kurzfassung

Konzeption und Implementierung einer
Teilnehmerverfolgung für verteilte aktive Dokumente
auf Basis Peer-to-Peer-basierter File Sharing Protokolle

Diese Arbeit beschäftigt sich mit der Konzeption und mit der Implementierung von
einem Teilsystem für die Verfolgung von Teilnehmern innerhalb eines verteilten und
dezentralisierten Workflows. Der Workflow is basiert auf aktiven Dokumenten, die die
Verbreitung von medizinischer Information in einer dynamischen Gruppe von Teilneh-
mern unterstützen. Ein elektronisches System, das aus lose gekoppelten, autonomen,
heterogenen Teilsystemen besteht, ist im Rahmen vom Gesundheitswesen vorgestellt.
Der Akzent fällt auf die Komponente, die für die Organisation der Teilnehmer in einem
Overlay-Netzwerk und für die Sammlung von Routing-Informationen verantwortlich ist.
Diese Komponente ist basiert auf Peer-to-Peer-Technologie, damit Selbstorganisation
und Ad-hoc-Verbindung ermöglicht werden.

Abstract

Design and Implementation of a Participant Tracker for
Distributed Active Documents Based on
Peer-to-Peer-Based File Sharing Protocols

This thesis deals with the design and the implementation of a subsystem for tracking
participants within a distributed and decentralized workflow. The workflow is based on
active documents, that support the distribution of medical data in a dynamic group of
participants. An electronic system, that combines the activity-oriented and the content-
oriented workflow paradigms, is presented in the context of healthcare. The focus is set
on the component responsible for organizing the participants in an overlay network and
for gathering routing information about them. This component is based on peer-to-peer
technology, in order to enable self-organization and to provide ad-hoc ability.

Contents

List of Abbreviations vii

1 Introduction 1
1.1 Motivation and Challenges . 1
1.2 Objectives . 2

2 Methods 3

3 Basics 5
3.1 Active Documents . 5
3.2 α-Episodes and α-Docs . 5
3.3 α-Flow Components . 6

4 Requirements Analysis 7

5 Peer-to-Peer Technology Overview 9
5.1 P2P Architectures . 9
5.2 Current Technology . 10

5.2.1 Centralized Approach . 10
5.2.2 Decentralization with DHT . 11
5.2.3 The Purely Decentralized Approach of Gnutella 12
5.2.4 The Semi-centralized Approach of JXTA 12

5.3 Summary . 13

6 Possible Designs for the α-Tracker Network 15
6.1 E-Mail . 15
6.2 XMPP . 16

i

Contents

6.3 Purely Decentralized P2P Network . 16
6.4 Partially Centralized P2P Network . 17
6.5 Summary . 19

7 JXTA 21
7.1 JXTA Protocols . 22
7.2 JXTA Architecture . 23
7.3 Peers . 24
7.4 Peer Groups . 25
7.5 Advertisements . 26
7.6 Pipes . 27
7.7 Messages . 28
7.8 Network Organization . 28
7.9 Security . 29
7.10 Summary . 30

8 Proposed Solution 31
8.1 JXTA Edge- and Super-Peers . 31
8.2 α-Doc-Coordinator . 31
8.3 Communication . 33
8.4 Peer Discovery . 33
8.5 Summary . 33

9 Design of the α-Tracker System 35
9.1 Class Structure of the Prototype . 35
9.2 Control Interface . 36
9.3 JXTA Messages . 37
9.4 α-Doc-Coordinator . 37
9.5 Provide a List with All Online Peers . 39
9.6 Provide IP and Port of a Particular Peer 40
9.7 Summary . 41

10 Implementation Issues 43
10.1 Building Purely Decentralized P2P Network with JXTA 43

ii

Contents

10.2 Peer Configuration . 44
10.3 Dynamic Port Assignment . 44
10.4 Starting α-Doc-Coordinator . 44

11 Discussion 47
11.1 Combining Drools Pipelines and JXTA Pipes 47
11.2 Security of the α-Flow Network . 47
11.3 Headless α-Doc-Coordinator . 48
11.4 Cache Management Optimization for JXTA Edge Peers 48

12 Conclusion 49

iii

List of Figures

3.1 α-Doc structure . 6

5.1 Bittorent network . 11
5.2 Flooding in a Gnutella network . 13

6.1 A completely decentralized P2P network 17
6.2 A partially centralized P2P network . 18

7.1 Layer organization in JXTA . 24

8.1 Network with α-Doc-Coordinators on the super peer machines 32

9.1 Class structure of the prototype . 36
9.2 Interface for invoking functions . 37
9.3 An edge peer gets the latest information from its α-Doc-Coordinator . . 38
9.4 An edge peer commits local changes to its α-Doc-Coordinator 39
9.5 Creating a list with all peers currently online 40

v

List of Abbreviations

API Application Programming Interface

DHCP Dynamic Host Configuration Protocol

DHT Distributed Hash Table

DNS Domain Name System

DoS Denial-of-Service

HTTP Hypertext Transfer Protocol

JXTA Juxtapose, meaning side-by-side; not an acronym

MIME Multipurpose Internet Mail Extensions

P2P Peer-to-Peer

PDA Personal Digital Assistant

PKI Public Key Infrastructure

SHA Secure Hash Algorithm

TCP Transmission Control Protocol

TTL Time To Live

UML Unified Modelling Language

UUID Universally Unique Identifier

URI Uniform Resource Identifier

vii

List of Figures

URL Uniform Resource Locator

XML Extended Markup Language

viii

1 Introduction

Healthcare IT support demands inter-institutional processes which implies many partici-
pants contributing to the workflow. Such organization requires complex communication
between the contributors and continuous updating of documents. This thesis presents
an electronic system for managing the treatment of a patient, focusing on the module
that is responsible for tracking the participants in the treatment workflow.

1.1 Motivation and Challenges

Paper-based information exchange can no longer meet the demands of the healthcare
sector, where many participants from different institutions are involved in the treatment
of a patient. Inadequate distribution of information, due to the rapid advance of medicine
and the specialization of physicians, is a basis for medical errors. In this context neither
activity-oriented nor content-oriented workflows can realize the complex behavior of a
workflow with unknown sets of actors and institutions [NL10]. Furthermore, the system
has to be distributed amongst all the participants, while ensuring them with autonomy
at the same time.
Project α-Flow combines the traditional activity-oriented and content-oriented

paradigms to provide a model, where workflows are presented as documents shared
between the participants. The aim of α-Flow is to present a concept for an electronic
system, that offers document-based workflow with loosely coupled heterogeneous systems
at the participating sites [NL09]. The documents will allow access, viewing and editing,
while being active software agents at the same time.

1

1 Introduction

1.2 Objectives

With a distributed and dynamic system, that evolves continuously, it is necessary
amongst others to keep track of new members and changing information about known
ones. This thesis focuses on the component from α-Flow, that is responsible for tracking
the participants. It is called α-Tracker and its main purpose is to create a network, to
which every participant can connect. This network should have ad-hoc behaviour, the
ability to self-organize itself and fault tolerance with failing or unreachable nodes. The
α-Tracker will gather routing information about participants of the network and provide
it to other components of α-Flow for transferring data between members. Due to the
importance of providing the latest information about a patient it has to be guaranteed,
that every member of the network can reach every other member, who is currently online.
In addition, a protocol for synchronizing nodes, who were offline, has to be defined.

2

2 Methods

In this thesis a possible design for a participant tracker in the context of distributed
active documents is outlined. It is part of the α-Flow project and chapter 3 describes
the concepts of this system. The following chapter 4 analyses the requirements to which
the application has to correspond in order to fulfil its functions. The aspired behaviour
predisposes the use of peer-to-peer technology as the most appropriate solution. Chapter
5 offers an overview of this technology and chapter 6 compares it to other possible
solutions.
As a result of the evaluation of existing P2P technologies, the JXTA protocol, which

chapter 7 describes in depths, has been chosen for the design and implementation.
This protocol offers concepts to solve the typical problems presented to a dynamic and
interchangeable network. It also gives the developer freedom to easily include his own
services and extend the existing ones. The chapter explains the architecture of JXTA
along with its basic building blocks and concepts for supporting the network.
A proposed solution is outlined in chapter 8. This solution is called α-Tracker and

how it fulfils its functions is explained in chapter 9. UML diagrams have been used to
describe the different interactions withing the tracking system. Chapter 10 presents
some aspects, that have emerged during the implementation with JXTA, and chapter 11
proposes some future extensions of the α-Tracker. The last chapter 12 summarizes the
whole thesis and gives an overview of the accomplished results.

3

3 Basics

This chapter explains the basic concepts of the α-Flow project. The workflow is based
on active documents called α-Docs, that are organized in α-Episodes. These documents
have different α-Cards for saving the information regarding content and organization.
They are furthermore divided into artifacts. The term α refers to the active-properties
associated with the documents.

3.1 Active Documents

An active document is a document that allows a direct interaction with itself. These
documents represent the workflow schemata and function as software agents, that extend
the documents to not just accessing, viewing and editing content, but to coordination
between the participants too. The aim is to enable this without corrupting the workflow
[NL10].

3.2 α-Episodes and α-Docs

A distributed process characterized by a particular goal and constructed of a variety
of distributed activities is called an α-Episode [NL09]. There can be many different
α-Episodes in the α-Flow depending on the treatment of the patient. Every α-Episode
is represented by an α-Doc.
An α-Doc is the top level architecture in an α-Episode and every participant in the

workflow receives a replica of the α-Doc responsible for this α-Episode. How exactly the
replicas will be distributed is still a subject of future work.

The second level of architecture consists of α-Cards, which every α-Doc has as children
(see fig. 3.1). The α-Cards are divided into content and coordination α-Cards. At

5

3 Basics

present, there are two coordination α-Cards and their existence is compulsive for every
α-Doc. They are Treatment Structure Artifact (TSA) and Collaboration Resource
Artifact (CRA). TSA provides information about the relationships between the different
content cards and about the workflow schemata, while CRA holds information about
all the participants in an α-Episode. There are currently no constraints for the number
of content α-Cards that is allowed. The α-Tracker aims at providing information for
the CRA. Due to the distributed nature of the application these cards are shared and
updated amongst all the participants. α-Cards are used both for structuring content
documents and consolidate coordination information [NL09].

Figure 3.1: α-Doc structure

3.3 α-Flow Components

The α-Flow project is still under development, however some components can already be
outlined as separate parts of the project. Currently there are seven basic components
- the α-Editor, the α-Properties, the α-Model, the α-Injector, the α-VerVarStore, α-
Institutions and α-Tracker. The α-Tracker is connected with the α-Properties and may
be in future with the α-Editor. The α-Editor allows the user to view and edit the
document. The α-Properties lie underneath the editor and are responsible for most
of the coordination logic. Drools is a platform, that is a part of α-Properties. Drools
Pipelines are used for incoming event streams.

6

4 Requirements Analysis

In the course of this thesis a system will be designed that enables users to connect to each
other, organize themselves in groups and exchange information in order to participate in
a common workflow. This system should have no single point of failure, because a very
dynamic behaviour is expected, where new users will be frequently added to the network,
existing ones will vanish or be offline and routing information will change. Due to the
distribution of the system amongst users on the edges of the Internet, it should be able
to connect them in spite of network differences and obstacles like firewall or Network
Address Translation (NAT) devices.

The following functional requirements have been outlined in order to enable the
tracking of participants from different institutions. They have been motivated by a
workflow, within a continuously changing and evolving group of participants.

• Ad-Hoc Network - An overlay ad-hoc network should be created, where participants
in an α-Flow self-organize themselves in groups, while enabling everyone to join and
leave dynamically without endangering the stability of the network. A mechanism
should guarantee that new members can discover everyone else and initiate contact.

• Routing Information - Provide the IP address and the port number of any known
member. This information will be utilized in order to build Drools Pipelines to
other participants and transfer payloads.

• List with Online Nodes - Provide a list with all participants, that are currently
online. This list can be used together with the address information to send
notifications to all other members of the group regarding local data changes. In
future the editor could use this list to visualize the status of the nodes in the group.

• Synchronization - Due to the nature of active documents, it can not be expected,
that the participants will be always online or that they will not change their network

7

4 Requirements Analysis

address. Thus a protocol for synchronizing offline nodes, when they come online
again, has to be defined.

8

5 Peer-to-Peer Technology Overview

Peer-to-peer is an architecture for building distributed networks where all participants
act both as a client and as a server and provide a part of their resources to the others.
Such networks consist of nodes with equal responsibilities that join and leave freely and
do not rely on some central service for coordination. This ad-hoc concept offers improved
scalability and robustness. The three principles that define an application as peer-to-peer
are sharing resources, decentralization and self-organization [AH].
The main difference between the client-server model and peer-to-peer (P2P) is that

in the first case, only servers provide resources, while a client consumes them. The
peer-to-peer behaviour where two sides connect directly to each other can be found in
many well-established concepts like E-Mail servers or DNS servers, but it has become
popular after Napster introduced its file sharing service at the end of the 90s [AH].

5.1 P2P Architectures

P2P systems can be viewed as an overlay network on top of the Internet and information is
usually exchanged over the underlying Internet Protocol (IP). The most common functions
of P2P applications are instant messaging, file sharing and distributed computing. There
are three approaches in which existing protocols create a network for this services [BS].

• Centralized Network – A central service is used to coordinate and organize the
peers. They connect to the central server to receive information about other peers,
after which they can connect directly to these peers. This approach is simple to
implement and it solves some problems like query routing and indexing. However,
it brings disadvantages of the server-client model, because there is a single point of
failure and limited scalability.

9

5 Peer-to-Peer Technology Overview

• Decentralized Network – There is no central service and nodes have to organize
themselves and care for the distribution of queries and resources on their own. This
makes the network very scalable and independent, but queries give no guarantee that
all nodes will be reached and flooding the network results in a sizable bandwidth
consumption.

• Semi-centralized (Hybrid) Network – The hybrid network splits the central service
provided by the centralized network in so called super nodes. The super nodes
provide infrastructure support like routing and query distribution.

5.2 Current Technology

5.2.1 Centralized Approach

The first P2P protocol that gained popularity is Napster. It solved the main problems
of peer-to-peer networks by introducing a central server, which is responsible for the
response to queries, indexing and discovery of new peers. This server holds a database
with all known peers and the content they are offering. It provides information about
endpoint routing, that peers can use in order to connect directly to each other. However,
the big disadvantage of this concept with a single point of failure has led to the end of
the network, once the central server was closed due to copyright violations and the peers
could not support the network on their own [AH].

The main idea of this approach was adopted by the Bittorrent protocol. It too uses a
central server for answering queries, indexing and peer discovery (see fig. 5.11), but it
develops the concept further by introducing torrent files. They are stored on the server,
called tracker, and contain the Uniform Resource Locator (URL) of the tracker as well as
Secure Hash Algorithm (SHA-1) hashes. Shared files are divided into blocks, which the
torrent file describes and verifies with the hashes. Once a peer has retrieved a torrent
file from the tracker, it is informed by him about other peers, that have the same torrent
and join their group called a swarm. Every member of this swarm sends and receives
blocks of the file at the same time [Hin04].

1 Source: http://computer.howstuffworks.com/bittorrent2.htm

10

http://computer.howstuffworks.com/bittorrent2.htm

5.2 Current Technology

Figure 5.1: Bittorent network

5.2.2 Decentralization with DHT

In order to overcome the need of a central coordination service some protocols implement
a Distributed Hash Table (DHT). A DHT is a decentralized distributed system that
provides a service for retrieving a value only with the key assigned to it. The table
is distributed amongst many nodes, which minimizes the expenses of maintaining it
when nodes join, leave or fail and allows the table to scale to extremely large numbers
[GBL+03].

Chord is a protocol and algorithm used in DHT. The hash table stores a key for every
node and arranges them in a circle where a node has a list with a number of its successors
and predecessors in that circle. If the node can not resolve a query on its own, it sends
messages the other nodes. Routing information about newly joined or departed nodes is
updated with periodical messages. The main features of the Chord protocol are provable
correctness and provable performance [SMLN+02].

11

5 Peer-to-Peer Technology Overview

Another protocol that offers provable consistency and performance and adds resistance
to Denial-of-Service (DoS) attacks is Kademlia. It is utilized for decentralized networks
too. The protocol uses a special algorithm for distributing the list of known nodes in
buckets based on the distance between two points. This distance is computed with XOR
metric and the buckets are sorted with least-recently seen policy, which optimizes the
distribution of messages, because there is an overview of the closest and most reliable
nodes [MM02]. The Kad network is an example that implements the Kademlia protocol
adding DHT to it [YL09].
A different approach to DHT is the protocol Tapestry. It focuses on efficiency and

minimizing message latency through constructing locally optimized routing tables. They
are created from initialization and are being continuously maintained in order [ZHS+04].

5.2.3 The Purely Decentralized Approach of Gnutella

Protocol Gnutella provides a simpler solution for a decentralized peer-to-peer network.
In order for a peer to join the network, it has to connect to a known Gnutella host
to receive a list with the addresses of other hosts. When the peer has this list to get
started with, it can be independent and discover new hosts on his own. In this way every
peer knows about a little part of the network and after a query message is sent to the
known peers, they propagate it onwards to other peers they are aware of. The query
can be flooded very fast through the network (see fig. 5.21) and in the case of a hit,
peers connect directly to exchange content. Every message has Time To Live (TTL) to
prevent indefinite propagating. Nevertheless, the flooding results in a sizable bandwidth
consumption and does not guarantee that every peer in the network will be reached
[Ber03].

5.2.4 The Semi-centralized Approach of JXTA

Protocol Juxtapose (JXTA) offers a compromise between completely decentralized and
completely centralized network, by deploying super nodes, that distribute the central
service on many reliable nodes. This semi-centralized concept implements a DHT, where

1 Source: http://computer.howstuffworks.com/file-sharing3.htm

12

http://computer.howstuffworks.com/file-sharing3.htm

5.3 Summary

Figure 5.2: Flooding in a Gnutella network

every super node knows about a part of the network and about other super nodes
[TAP03]. This enables the flooding of queries through the network in a more optimized
way than the one used by Gnutella, because only super peers forward them to other
peers. At the same time it resembles the centralized server approach of Napster and
Bittorrent, because edge peers discover each other through the service created by the
super peers. Edge peers rely on the super nodes to distribute queries, index the network,
provide routing information and discover new members. In this way the single point
of failure is avoided, while enabling the support of the network with a relatively small
number of reliable nodes. Furthermore, with the utilization of the HTTP protocol and
relay peers, that are super peers forwarding messages, JXTA also adds a feature, that
lacks in other protocols - bypassing firewalls, NAT and other barriers on the Internet
[TAD+02].

5.3 Summary

Peer-to-Peer technology has become extremely popular in the last ten years because
it enables many users to share their resources over a network, that is cheap and very
adaptable to changes. The ability to self-organize without the need of a central service
offers robustness and scalability which is an important feature in the dynamic world of

13

5 Peer-to-Peer Technology Overview

the Internet, where users join and leave continuously. P2P networks have often no single
point of failure and unlike the traditional client-server network, the bigger they become
the better the performance gets.

However, the lack of central coordination has its disadvantages which is suggested by
the fact, that two of the most popular protocols, Napster and Bittorrent, rely on such
service. No protocol so far has provided a solution for propagating queries and messages
through the network, that can match the server-client efficiency. The fact that everybody
can share its resources leads to bad reliability, because nodes leave the network or fail.
It also provides great difficulties to ensure security. Furthermore, the connection itself
is hard to be guaranteed when so different configurations of hardware, software and
network topology are spread across the edges of the Internet.
Many of the current P2P protocols, like Chord, Tapestry and Kademlia, focus on

optimizing the latency, routing and the propagation of messages when the network
consists of a very large number of nodes. This is of little importance for this project,
because the network will not reach such gigantic scale. The centralized service of Napster
and Bittorrent is not robust and scalable enough, while the approach of Gnutella lacks the
ability to guarantee, that every node can reach everyone else. It is also very important to
enable connecting under any circumstances and to bypass obstacles like firewall or NAT.
JXTA offers this feature and provides tools to implement a semi-centralized network
with DHT, where the discovery of every available peer is guaranteed. Therefore, it is the
most suited protocol for the purposes of this project.

14

6 Possible Designs for the α-Tracker
Network

This chapter describes the designs, that have been considered for implementing the
prototype of the α-Tracker. Before deciding for P2P technology, the server-based
concepts of E-Mail and Extensible Messaging and Presence Protocol (XMPP) were
regarded as possible solutions. Their advantages and disadvantages, as well as those of a
centralized and a semi-centralized P2P network, are compared in this chapter.

6.1 E-Mail

E-Mail is the most trivial way to exchange content, like sending e-mails with files attached
or just plain text. This may meet the everyday needs of most users, however for this
project it presents more problems than solutions.
The main disadvantage of E-Mail is the lack of guarantee for delivery. Certain

modifications of the protocol fix this issue, but with the standard protocols the user
sending an E-Mail has no way of knowing, that it has reached the intended recipient.
Furthermore, E-Mail servers use the store-and-forward principle, which results in end-to-
end latencies measured in minutes [MSA05].

Account management is another problem, when working with active documents and E-
Mail. A different account for every α-Doc-Replica would have to be created, because they
function as independent agents and this does not correspond to the ad-hoc requirement
for the network. Other issues regarding E-Mail are spam, viruses and malware1.

1 Malicious software

15

6 Possible Designs for the α-Tracker Network

6.2 XMPP

The XMPP technology, started with the name Jabber1, is very similar to E-Mail. It
relies on the same client-server model, where the various local servers transfer messages
between themselves until they reach the recipient [Dod00]. There is no main server,
which makes the system scalable and fault tolerant.

The main advantage of XMPP over E-Mail is the elimination of intermediate servers,
which enables delivering messages within seconds and the user is also immediately notified,
if the delivery has failed. XMPP offers real time presence information with the publish-
subscribe pattern [MSA05]. Knowing, whether your communication partner is online,
can fulfill one of the main requirements - providing a list with all online participants.
The disadvantage of this protocol for this project is the account management. Every

XMPP client needs a separate account, in order to connect to the server, which does
not correspond to the ad-hoc requirement for the α-Tracker network. This presents the
problem already explained in chapter 6.1 about α-Doc-Replicas and accounts.

6.3 Purely Decentralized P2P Network

The characteristics of P2P networks, where participants join and leave constantly, match
at best the bahaviour of α-Doc-Replicas. The network growth and exact organization
can not be predicted, due to the distribution of documents amongst many participant
from different institutions and the constantly evolving workflows.
A completely decentralized network, where every α-Doc-Replica represents a peer, is

the best case scenario for this project (see fig. 6.1). The peers will form a group, in
which messages will be flooded on the basis of the Gnutella principle. After the desired
content or member of the group is discovered, peers will connect directly to each other
to exchange information.

The problem in this case arises from the fact, that active documents are mostly offline.
So most of the time peers will not have the ability to support the network with query
distribution and indexing, nor share their content with other participants in an α-Episode.

1 The term “XMPP” refers to the core XML streaming protocols contributed by the Jabber Software
Foundation to the Internet Standards Process and subsequently published as RFCs 3920 and 3921.

16

6.4 Partially Centralized P2P Network

Furthermore, even the discovery of new members can not be guaranteed, because it will
require knowledge about existing peers in the network, in order to discover the rest of it.
When these known peers are offline, new members will not have anyone to connect to.

J

H

P

P

Z

H

J

H
D

Z

P

J

D

PC/Laptop

α-Doc-Replica

Send message

Figure 6.1: A completely decentralized P2P network

6.4 Partially Centralized P2P Network

A partially centralized P2P network combines the scalability and robustness of P2P
technology with the dependability of a central service for organization. This model can

17

6 Possible Designs for the α-Tracker Network

solve the problems of a purely decentralized P2P network presented in chapter 6.3, while
ensuring that members can join and leave freely.

Due to the fact, that edge peers, who are mostly offline, can not support the network
on their own, super peers will be deployed (see fig. 6.2). They will care for indexing
content, distributing queries and discovering new peers in the network. They will also
function as a repository for content, so every participant in a workflow will be able to
receive the latest information, even when the other members of his group are offline.

This model is very similar to XMPP, because the super peers function as servers, that
communicate with each other to transfer messages. The advantage of the P2P network
compared to XMPP is that members do not need an account, in order to connect to the
super peer, but instead can use the ad-hoc principle. This makes it simpler to let the
network organize itself and expand according to the current needs.

A

B

BA

C
D

B

D

C
D

Super Peer

PC/Laptop

α-Doc-Replica

Send message

Figure 6.2: A partially centralized P2P network

18

6.5 Summary

6.5 Summary

The current E-Mail protocols do not offer enough flexibility and reliability to meet
the demands of α-Flow. The XMPP protocol overcomes many of their disadvantages,
enabling instant delivery, confirmation for delivery and real time presence information.
However, the need of accounts does not allow ad-hoc behaviour, which is one of the
main requirements for the network. A completely decentralized P2P network offers
the ad-hoc feature, but due to the strong offline characteristic of α-Doc-Replicas it can
neither guarantee that every member of the network can be reached nor that the latest
information from a particular member can be acquired. This is not acceptable for the
distribution of medical data. This is why the thesis focuses on the semi-centralized
approach for P2P networking and the next chapter describes in depth the JXTA protocol,
which is a powerful tool for such tasks.

19

7 JXTA

JXTA is a collaborative open-source project, which aims at providing a set of XML1-based
standardized protocols for developing P2P applications. It was initially specified by Sun
Microsystems, but has grown into a strong supportive community with many contributors.
Its main objective was to define a platform for developers to create interoperable P2P
applications. In order to achieve this the platform was not based on one specific software
language, but was designed through a process, that has resulted in a specification of
the major points of the system and the corresponding implementation information. The
entire JXTA system is modelled with a small number of protocols for providing services,
which are simple to implement and to integrate into an existing system. Furthermore, it is
language, platform and network independent. JXTA is not an Application Programming
Interface (API) and does not require the utilization of a certain computer language or a
certain platform. There are language bindings for Java Standard Edition, C/C++, C#
and Java Micro Edition, however their use is not compulsory [JXT07a]. In future new
languages can evolve and provide their own bindings and new platforms can implement
the protocols in a completely new way. A JXTA application can operate over TCP2/IP,
HTTP3, Bluetooth or any other kind of communication protocol. Peers located on
completely different networks can communicate freely with each other. Thus, JXTA
enables the deployment of applications and services on continuously evolving groups of
collaborators.

1 Extended Markup Language
2 Transmission Control Protocol
3 Hypertext Transfer Protocol

21

7 JXTA

7.1 JXTA Protocols

There are six protocols that define JXTA divided into two categories [JXT07b]:

• JXTA Core Protocols

– Peer Resolver Protocol (PRP) – Provides query/response interface. A Resolver
Query Message is send to contact other peers of the same peer group, who can
then answer with a Resolver Response Message. These queries are the basic
for finding information about peers, JXTA structure, contents, etc. Every
peer defines listeners for message handling. The Endpoint Service provides
Endpoint Addresses, which specify the handlers. PRP does not guarantee,
that all or in fact any peers will be reached. It only offers a best effort attempt
and maximizes the chances of receiving a response.

– Endpoint Routing Protocol (ERP) – Provides request/query interface for
finding routes to other peers. Endpoints are described with Uniform Resource
Identifiers (URIs). They represent Endpoint Addresses, which can contain
both physical and virtual addresses. Extra routing information is added to the
message by the endpoints. A Route Query Message is sent with the Resolver
Query Message and the contacted peer responds with a Route Response
Message within the Resolver Response Message.

• JXTA Standard Protocols

– Peer Discovery Protocol (PDP) – Provides a discovery service for finding peer
resources in the network represented as advertisements. Such resource can
be anything described with an advertisement like peers, pipes or modules.
It is a high level service used for optimizing the discovery process thanks to
knowledge about the group topology. PDP sends Discovery Query Messages
and receives Discovery Response Messages. A response to the query is optional,
so the service does not guarantee the discovery of existing resources and offers
just a best effort attempt.

– Rendezvous Protocol (RVP) – Provides a service for propagation of messages
within a peer group in a controlled way. To increase efficiency some peers
function as Rendezvous Peers (RdvPeers), all of the RdvPeers form a PeerView.

22

7.2 JXTA Architecture

This protocol is divided into three parts. The PeerView Protocol is optional
and defines how the RdvPeers organize themselves. The Rendezvous Lease
Protocol is also optional and enables non-RdvPeers to receive propagated
messages. The Rendezvous Propagation Protocol is the only one mandatory
and it manages the propagation of the messages.

– Peer Information Protocol (PIP) – PIP is an optional protocol, that provides
a way to obtain status information about a peer. It is layered upon the Peer
Resolve Protocol and uses PIP Query Messages and PIP Response Messages
to contact peers and receive information about them.

– Pipe Binding Protocol (PBP) – Provides a virtual channel in the form of a
pipe between two endpoints, so peers can exchange information. It is layered
upon the Endpoint Protocol. Pipe Resolver Messages are used for both query
and response.

7.2 JXTA Architecture

The Architecture of JXTA is divided into three layers [JXT07a] (see fig. 7.1 1). The line
between these layers is not strict and some peers may see a service, while others perceive
it as an application.

JXTA Core
The core of JXTA encapsulates the minimal functions that are needed for a P2P
network and contains the basic components for building any P2P application. The
core enables discovery, transport, creation of peers and peer groups and security
mechanisms.

Services Layer
The services layer provides functions that are not absolutely essential for every
P2P application, but nevertheless will be employed often enough. Such services
are searching and indexing, directory, storage system, file sharing, distributed file
system, resource aggregation and renting, protocol translation, authentication and
Public Key Infrastructure (PKI).

1 Source: JXTA ProgGuide 2.0

23

7 JXTA

Application Layer
The application layer includes the developer’s implementation. It pulls peers
together for a common function like instant messaging, file sharing, content man-
agement, distributed computations or other.

Figure 7.1: Layer organization in JXTA

7.3 Peers

In JXTA a peer is any virtual device that implements one or more of the JXTA proto-
cols. This allows a wide range of devices like sensors, phones, PDAs1, PCs, servers or
supercomputers and one machine can host unlimited number of peers [JXT07a]. Every
peer is characterized by a Universally Unique Identifier (UUID) assigned to him during
the peer creation. This enables recognition even after the peer has changed its address.

Every peer publishes one or more network addresses as peer-endpoints. These endpoints
are used for a direct point-to-point communication. When such connection is not possible

1 Personal Digital Assistant

24

7.4 Peer Groups

due to boundaries like firewall, NAT, proxies or just physical differences between the
networks, other peers can function as a bridge for the communication.
There are three basic configurations for a JXTA peer [JXT07a].

• Full-Edge Peers – They implement all core and standard services of JXTA. The
majority of peers are full-edge, for example phones, PCs and servers.

• Minimal-Edge Peers – These are usually sensors, that implement only the core
services of JXTA. They need a proxy to receive access to the network and to use
standard services, which are above the core layer.

• Super-Peers – Peers that provide additional resources for supporting the network.
They have three key functions and can implement one or more of them. In practice,
when a peer has enough resources to be a super-peer, it is reasonable to give it
both relay and rendezvous functions.

– Relay – Stores messages, so it can forward them to peers who have no direct
connection to the network, because of a firewall or NAT.

– Rendezvous – Stores advertisements from other peers and resources, maintains
a global advertisement index. Helps edge peers to broadcast their queries
through the network and find peers they do not know.

– Proxy – Gives minimal edge-peers access to the network. It handles requests
and responds to queries on their behalf.

Peers are normally configured to discover each other and to organize themselves in
peer groups. Every peer has to be a member of at least one peer group, but there is no
upper limit. During startup a peer joins the World Peer Group per default, whose initial
scope of operations and services it can use to discover or create other groups.

7.4 Peer Groups

A peer group is a set of peers who have agreed upon common services. Every peer group
has an unique group ID and can define its own membership policy. This policy can range
from completely open to the demand of secured membership credentials.
There are two types of peer groups in JXTA – the World Peer Group and user peer

groups. Every user peer group is a derivation of the World Peer Group. The peer

25

7 JXTA

joins this standard group as default in order to have access to its services and discover
other resources [OTG02]. Then every peer can freely create new peer groups or discover
existing ones and join them. The retirement from a group membership is also free, the
World Peer Group is the only one that can not be left. Several reasons have led to the
abstraction of peer groups [OTG02]:

Secure Environment
Every peer group can define its own security policy sometimes as complex as key
cryptography. The access to the peer group’s resources is limited and peers can
communicate only with peers from the same peer group, which means that content
can be securely published and accessed. All peers belong to the World Peer Group
and every peer can communicate with everyone else, but thanks to the user groups,
a more precise collection of peers can be addressed.

Scoping Environment
Peer Groups enable the specialization of regions from the network for a common
task.

Monitoring Environment
The peer group enables peers to monitor other members of the group, their
interactions, traffic introspection, accountability and traceability.

7.5 Advertisements

Advertisements are one of the basic building blocks in JXTA. They are meta-data
structures based on XML, which carry the information about services and resources.
Every advertisement contains the ID of the advertised resource plus other hierarchically
structured elements needed for the complete description of this resource [OTG02]. Due
to the XML format advertisements are platform independent and can be exchanged even
between applications based on different computer languages. Every peer can create its
own custom advertisements in order to describe some unique contents or modules it has
to offer. They can also be included in messages exchanged between peers.

Advertisements are divided into three basic categories – peer advertisements, peer group
advertisements and everything else. They can be pulled from super peers or from known
edge peers and when an advertisement is received, every peer defines its own method

26

7.6 Pipes

for handling it. Only core advertisements containing resolver and route information
are stored automatically in the local cache. All others, including advertisements about
peers, groups and pipes, should be explicitly saved by the application. They can be
later retrieved from the cache and serve for the usage of resources, without the need to
discover them again. Every advertisement has life time and expiration time. After the
life time the advertisement will not be valid any more. And after the expiration time the
advertisement will be deleted from the cache and the application will attempt to refresh
it from the source. If an advertisement is republished, its life and expiration time are
updated accordingly.

7.6 Pipes

In JXTA a pipe is a virtual channel between two peers. It is dynamically bound to
an end-point of each peer during creation, which allows a fault-tolerant behaviour in
an unreliable and interchangeable peer-to-peer network. An end-point is the logical
abstraction of an address on the network for sending and receiving data. Any address
that can support unreliable package-based messages can become an end-point [OTG02].
Connectivity is established independent of the end-point location and can be achieved as
long as the peers have a direct connection or can communicate over a relay peer. A pipe
can send any type of data including XML, string, binary and Java objects.
In order for two peers to create this connection, their end-points have to share the

same peer group. All peers belong to he World Peer Group, but the difference is in which
Pipe Service will resolve the pipe. Two peers can maintain many pipes between each
other in different peer groups due to security reasons and every pipe will be resolved by
the Pipe Service of the corresponding group.
The default Pipe Service offered by JXTA sends messages unidirectionally and asyn-

chronously. This service enables two modes of transfer – point-to-point and propagated
[OTG02].

Point-to-point Pipes
The IP address and the port chosen for communication are described in a JXTA
Endpoint Address. The sending peer binds an output pipe to its endpoint address
and to the one of the receiving peer, where the receiving peer regards this as

27

7 JXTA

input pipe. This virtual channel, build between two JXTA Endpoints, is used for
transferring data from one peer to another.

Propagated Pipes
For the propagated pipe to function, the sending peer binds the pipe to its JXTA
Endpoint and to the JXTA Endpoints of many receiving peers. This is not the
publish/subscribe method of XMPP, but a simple multicast from one peer to many
others simultaneously.

Unidirectional pipes are the low-level of JXTA pipe abstraction. The developer can
acquire a bidirectional and reliable communication with JxtaSocket and JxtaBiDiPipe,
which JXSE1 provides as the high-level abstraction implemented on top of the pipe
primitives. They ensure message sequencing, delivery and security.

7.7 Messages

Messages are the basic block of information exchange between peers. The specification
of the JXTA protocols consists in the set of messages exchanged. A message defines a
package, which is divided into sections. Each section can have different MIME2 type
allowing peers to interpret the message on their own and to extract just the information
they need [OTG02]. Any kind of data can be packed in the message like string, binary,
Java objects or C structures. It is then converted into binary wire format for more
efficient use of the underlying transfer protocols.

7.8 Network Organization

The ad-hoc nature of a peer-to-peer network means that peers, who are constantly
joining and leaving it, present ever changing routing information. The only common
denominator are the JXTA protocols, so the network relies on special types of peers to
organize itself and sustain its functionality – rendezvous and relay peers [JXT07a].

1 JXTA for Java SE/EE 5.0
2 Multipurpose Internet Mail Extensions

28

7.9 Security

The main task of rendezvous peers is to propagate queries and to store advertisements
about other peers and their resources. An edge peer that sends a query can contact
them and if they do not have the desired information, they propagate the query through
the network. They ensure, that peers, who do not see the whole network, can too find
all available members. Rendezvous peers also maintain a global index of each other
and build a form of DHT. They can be used as super nodes in hybrid P2P networks to
guarantee the scalability of the system and that new peers can be discovered or reached.

Relay peers are used for forwarding messages and not queries. In JXTA they correspond
to routers and gateways. All the barriers that surround the different networks call for the
use of such special peers that can bypass them. Firewalls are one of the main obstacle
for sending information through the Internet and because they filter TCP/IP and almost
everything else, JXTA can use HTTP to create the connection. The only condition for
this connection is that the relay peer outside the firewall and the edge peer inside the
firewall know about each other. The drawback is that HTTP allows only communication
initiated by the client. So the peer inside the firewall has to contact the relay peer in
order to receive its messages. Problems created by NAT, proxy servers and DHCP1 are
solved on the same way. When the IP address or port number of a peer changes, this
peer has to contact the relay peer first and then receive the messages stored for him.

7.9 Security

Security is a main issue in P2P technology, because nodes join and leave all the time
and take part in forwarding information on behalf of other nodes. JXTA offers different
methods for ensuring the security of a network. One of them is a Membership Protocol,
which allows peer groups to restrict the access to the group by requiring a set of credentials
from new peers. Another possibility is the encryption of the communication between
peers. For this purpose the Java binding of JXTA offers an interface that can encrypt
the messages before they are sent. A digital signature can also be added to the messages,
in order to guarantee the identity of the peer, who sends them [OTG02].

1 Dynamic Host Configuration Protocol

29

7 JXTA

7.10 Summary

The JXTA protocol is a powerful tool for building semi-centralized P2P networks. Its
super peer concept offers a simple method for building a DHT and enabling the self-
organization of the network. In addition, it defines a way for bypassing barriers on the
Internet - something, that most other protocols neglect. Furthermore, the Java binding
of the protocol offers an interface for ensuring the security of the network. Therefore,
JXTA is utilized for implementing the α-Tracker based on the proposed solution, which
is outlined in the next chapter.

30

8 Proposed Solution

Based on the advantages and disadvantages of the possible designs (see chapter 6) and the
study of the current peer-to-peer technology (see chapters 5 and 7), a partially centralized
P2P network using protocol JXTA will be implemented to fulfill the requirements
presented in chapter 4. This chapter outlines a solution for creating the α-Tracker, that
will be responsible for building and supporting the network, tracking the participants
and synchronizing them.

8.1 JXTA Edge- and Super-Peers

An edge peer is represented by the α-Doc-Replica, which every participant receives. They
are JXTA full-edge peers, which do not connect to each other directly, but to a JXTA
super peer. Every institution will deploy such super peer, that is responsible for the
communication between edge peers. It is used for its rendezvous functions and is going
to be online all the time. This guarantees, that the whole network can be reached over
the super peer and makes possible the utilization of the JXTA features, that deal with
firewalls, NAT and DHCP. The super peer can also be used as a repository for the latest
updates in an α-Flow.

8.2 α-Doc-Coordinator

In order to use the JXTA super peers as a repository, a mechanism for storing information
should be defined. Due to the complex interactions between the artifacts of an α-Card,
the α-Tracker can only deliver information needed for the transfer of data and it lets
the other components decide what to do with the data. This is why the super peer
itself saves only a copy of every α-Doc, called α-Doc-Coordinator. It is placed for

31

8 Proposed Solution

synchronization on the machine where the super peer is running (see fig. 8.1). When an
edge peer wants to commit its changes before going offline, it requests a connection to
the α-Doc-Coordinator from its super peer. The super peer is used only as a middle man
for providing routing information for the transmission. Edge peers, that were offline, can
later use the α-Doc-Coordinator to receive the latest information and synchronize with
the peers, that are now offline.

Institution Z

Institution Y

A

B

BA

C
D

B

D

C
D

Super Peer

PC/Laptop

α-Doc-Replica

Send message

Institution X

C

A

D

B

B

A

D

C

α-Doc-Coordinator on a
super peer machine

Figure 8.1: Network with α-Doc-Coordinators on the super peer machines

32

8.3 Communication

8.3 Communication

The JXTA edge peers are mostly offline and are not able to keep track of the current
address information about other edge peers, who change their IP and port frequently.
Therefore, it is more effective to use the JXTA super peer to initiate contact with them.
The super peer is responsible for delivering the list with all online peers as well as
information about the address of other edge peers needed for connection. The JXTA
edge peers do not communicate directly with each other, but rely on their JXTA super
peers completely.

8.4 Peer Discovery

Every JXTA edge peer needs the IP address and the port number of its JXTA super peer.
Apart from that, edge peers do not need any other information, because everything else
is taken over by the super peers. After startup, an edge peer connects automatically to
its super peer and the advertisements, that describe it, will be stored there. This way the
JXTA super peers build a DHT of the network. If a new JXTA super peer is introduced
in the network, it has to contact just one other super peer to receive information about
the whole network.

8.5 Summary

This chapter outlines a solution for building the α-Tracker network based on a partially
centralized organization using edge- and super-peers. This method ensures the scalability
of the network and offers a reliable service, that is available all the time, while enabling
the edge peers to be mostly offline. The communication through the network is taken
over by super peers. α-Doc-Coordinators enable the synchronization between peers, who
are not online at the same time.

33

9 Design of the α-Tracker System

This chapter presents the design of the proposed solution from chapter 8. This is a
prototype of the α-Tracker designed to fulfill the requirements listed in chapter 4. It is
assumed, that every institution will deploy one super peer and the network will have
at least one such peer. This super peer is continuously online on a machine, which has
a public unchangeable IP address. Furthermore, no hardware or software component
prevents the connection to this machine from the local or any external network.

9.1 Class Structure of the Prototype

Although there are two types of peers and respectively a prototype for each of them,
their structure is so similar, that they can be regarded as one prototype with some extra
functions attached to the JXTA super peer (see fig. 9.1). Each peer is started as a
thread, which is defined in a primary class responsible for joining the α-Tracker network
and initializing listeners for incoming messages. In order to improve the readability and
the maintainability of the code, all other functions are encapsulated in separate classes
and can be called by creating an object of the class. The strategy design pattern was
used for this purpose.

35

9 Design of the α-Tracker System

Figure 9.1: Class structure of the prototype

9.2 Control Interface

In order to control the peer several public methods are defined, that invoke the methods
encapsulated in separate classes (see fig. 9.2). The methods create an object of the class,
and if necessary, results are returned. This is the case of providing routing information
or a list with all online peers.

36

9.3 JXTA Messages

Figure 9.2: Interface for invoking functions

9.3 JXTA Messages

JXTA Messages, together with advertisements, are the instruments for exchanging infor-
mation between peers. In this prototype JXTA messages are used only for confirmation,
which edge peers are currently online. In the future they can be used for sending content
payloads with JXTA pipes. There are a couple of steps needed for sending a JXTA
message to another peer. This is why these steps are encapsulated in the class SendMes-
sage.java. When an object of this class is created, the message and the recipient are
passed as parameters. The methods in the class then find the correct pipe advertisement
in the cache, open an output pipe to the peer, send the message and close the pipe.

9.4 α-Doc-Coordinator

As already explained in chapter 8.2 the α-Doc-Coordinators are used as a repository
for synchronization between peers that are offline. The functions needed for this syn-
chronization are getting the latest updates from the α-Doc-Coordinator and committing
local updates in it, so they are visible by other peers. JXTA edge peers have access only
to the JXTA super peer from their institution, so every institution taking part in an
α-Episode needs an α-Doc-Coordinator of its own. As no machine can support so many
running active documents, only the JXTA super peer will be online all the time and
α-Doc-Coordinators can be started for a short time on demand by an JXTA edge peer.
For an edge peer to get the latest information from its α-Doc-Coordinator, the edge

peer has to send a request to the super peer to start the coordinator (see fig. 9.3).
Afterwards the super peer will inform the edge peer, on which port it can connect to the
coordinator. The port number changes every time as explained in chapter 10.3.

37

9 Design of the α-Tracker System

Figure 9.3: An edge peer gets the latest information from its α-Doc-Coordinator

If a JXTA edge peer wants to commit its content changes before going offline, the
same procedure for starting the coordinator is executed. Once the edge peer and its
α-Doc-Coordinator connect, other components can synchronize the content (see fig. 9.4).
The α-Doc-Coordinator will then request from its super peer a list with all other super
peers, contact them and inform them, that new information is available. At this point
the super peers can synchronize their α-Doc-Coordinators on the same principle and
every institution will have the latest update of an α-Doc.

38

9.5 Provide a List with All Online Peers

Figure 9.4: An edge peer commits local changes to its α-Doc-Coordinator

9.5 Provide a List with All Online Peers

When an edge peer requests such list from its super peer, the super peer has the task
of creating it. For the list to be created, the online status of all known edge peers is
checked by sending them JXTA messages and collecting the answers (see fig. 9.5). The
super peer creates a worker thread, so it can handle new requests, while the list is being
created. However, the super peer knows just the edge peers from its institution, thus the
message will be send to all edge and super peers alike. When an edge peer receives a
message demanding a confirmation about its online status, it answers directly to its super
peer, because it is the only one that could send the message. If a super peer receives the
same message, it starts a worker thread, that creates the list for its local institution and
sends it to the requesting super peer. When all lists from institutions are received, the

39

9 Design of the α-Tracker System

initial worker thread combines them and sends the complete list to the edge peer, that
has requested it in the first place.

Figure 9.5: Creating a list with all peers currently online

9.6 Provide IP and Port of a Particular Peer

The routing information about known peers is saved automatically by JXTA in Route
Advertisements when the peers are discovered. If the routing information has changed,
the advertisement is updated at the next contact with the peer. When the exact address
of an edge peer is requested from the super peer, the Route Advertisement of this edge
peer is retrieved from the cache of the super peer, so the IP address and port number
can be obtained from it.

40

9.7 Summary

9.7 Summary

This chapter details the prototype design of the component called α-Tracker. The
structure of the prototype is presented and the interactions between peers for acquiring
information and exchanging content are described with the help of UML diagrams.
Furthermore, it is explained how the collaboration between JXTA edge peers, JXTA
super peers and α-Doc-Coordinators fulfills the system requirements.

41

10 Implementation Issues

The following chapter overviews some aspects, that have emerged during the implemen-
tation. Chapter 10.1 describes an early attempt to build a purely decentralized network
with JXTA and the disadvantages, that have resulted from this design. The rest of this
chapter presents some JXTA principles, that need to be observed.

10.1 Building Purely Decentralized P2P Network with
JXTA

Project JXTA is designed for partially centralized P2P networks, so building a purely
decentralized one is not trivial. A very good example, that can be used as a basis for
this purpose is the Gnutella protocol (see 5.2).
Firstly, all nodes in this JXTA network have to be JXTA super nodes, in order to

forward queries through the network to the nodes they know. For a new node to join the
network, it should know the IP address and port number of some of the existing ones, so
it has someone to connect to. This information can be added to the configuration at
startup as described in 10.2. The main disadvantage is that the exact address information
for at least several other nodes, should be available. This is not trivial, because every
JXTA peer requires separate port (see 10.3) and with many JXTA peers running on the
same machine, ports should be assigned dynamically.
When every node knows some of the other members of the network, like the hosts

in Gnutella, queries can be flooded from one node to another. This is a predisposition
for a sizeable bandwidth consumption, but there is no other method for reaching every
single node. This is why the TTL property of Gnutella queries should not be used in
our case. Since participants exchange medical information, there can be no compromises
with acquiring the latest available updates about the patient’s condition.

43

10 Implementation Issues

10.2 Peer Configuration

When a peer is started for the first time, JXTA assigns a PID1 to him. This PID is
used only by JXTA and is saved in a XML-file together with everything else about the
configuration of this peer. The configuration includes, which protocols should be used
(HTTP, TCP, multicast), the ports to be opened and a list with the addresses of known
super peers. This configuration file is retrieved by every start of the peer, so the same
PID can be assigned to it.

The class Configurator.java is called automatically upon peer start and adjust the list
with known super peers, if necessary. The design foresees that each edge peer will know
only the super peer of its institution, but other super peers can be added too. For a super
peer to join the super group and respectively become a part of the DHT of our network,
it should know the IP address of at least one other super peer, in order to connect to it
and retrieve the information about the rest of the group. This address needs to be given
to the configurator, when starting the peer. Unfortunately, new IP addresses can not be
dynamically added to the list in the configuration, while the peer is running.

10.3 Dynamic Port Assignment

Every JXTA peer requires a separate port for communication. One participant can take
part in many α-Flows and respectively receive many α-Doc-Replicas. Therefore, the
port number, which every α-Doc-Replica receives, can not be foreseen and should be
assigned dynamically according to the currently available ports. This is necessary for
the α-Doc-Coordinators on the super peer machine as well.

10.4 Starting α-Doc-Coordinator

One of the main principles of JXTA is that every user group is a derivation of the World
Peer Group. When a peer wants do join a new group, it has to use the basic scope of
services of the World Peer Group, in order to discover or create this new group. However,

1 Peer ID

44

10.4 Starting α-Doc-Coordinator

the design of JXTA has defined the World Peer Group as singleton and there can be only
one instance of it in a Java Virtual Machine. This results in a failure, when a second
peer within the same virtual machine is started. Therefore, the JXTA super peer can
not start the α-Doc-Coordinator on its own. A solution for this issue has to be found in
future, in order to enable starting α-Doc-Coordinators on demand.

45

11 Discussion

The following chapter gives an overview about how this module of the α-Flow project
can be extended to comprise more functions. JXTA can ensure a secure channel for
transferring data and a collaboration with Drools can create a secure pipeline, that is
able to bypass barriers. There are also several possibilities to improve the performance
of the existing prototype with new cache management for edge peers or the introduction
of headless α-Doc-Coordinators.

11.1 Combining Drools Pipelines and JXTA Pipes

Communication protocols, like TCP and UDP1, are almost always blocked by firewalls.
To ensure that data can always be transfered between participants it should be transferred
over the HTTP protocol. JXTA can build pipes using HTTP. A collaboration between
JXTA and Drools can be created, where JXTA bypasses the firewall and delivers the
data to the Drools Pipeline for input. For this purpose the interface of α-Properties
responsible for building pipelines should be overwritten, in order to include JXTA pipes
too. This way JXTA cares for the physical transportation and Drools for inserting the
data in α-Properties.

11.2 Security of the α-Flow Network

A security mechanism should be incorporated in the α-Flow network, due to sensitivity
of medical information. As mentioned in 7.9, JXTA offers protocols for this purpose.
Encryption interfaces are also included in the Java binding of the protocol. In future,

1 User Datagram Protocol

47

11 Discussion

the introduction of a membership protocol with a set of credentials can ensure, that only
authorized participants can join the network. The information exchanged between peers
can be encrypted, in order to prevent third parties from accessing it. The encryption
can be overtaken by JXTA, if the collaboration explained in 11.1 is realized.

11.3 Headless α-Doc-Coordinator

α-Doc-Coordinators are used only as a repository for the latest information. All compo-
nents, for example the α-Editor, that do not take part in tasks connected with tracking,
exchanging information and saving content can be stripped off the α-Doc-Coordinator in
order to optimize its performance. This version of an α-Doc-Replica is called headless,
because it has only the most essential functions.

11.4 Cache Management Optimization for JXTA Edge
Peers

The cache, that every JXTA peer creates for its needs, takes about 10 MB of space on the
HDD. This can become problematic for a participant, who takes part in many α-Flows
and has to reserve this space for every α-Doc-Replica. The present cache management
system was introduced in JXTA to optimize searching for advertisements, when the peer
group is very large. In this prototype an edge peer communicates only with its super
peer, so the cache can be abandoned completely. The edge peer knows the address of the
super peer and connects to it at startup relying on the super peer to deliver information
about the network from its cache. However, a JXTA peer can not function without
advertisements, which are saved only in the cache. This is why cache creation can be
regarded as a temporal need during the peer is functioning. At startup it is created so
the peer can save advertisements there, but at shut down it is deleted.

48

12 Conclusion

Modern treatment of patients, where many participants from different institution are
involved in the workflow, requires more than the traditional paper-based information
exchange and coordination between the participants. The α-Flow model offers an
electronic document-based solution, which combines both activity- and content-oriented
workflows. The documents, called α-Docs, function as active software agents building a
system, that is distributed amongst all participants giving them autonomy and enabling
them to organize themselves according to the evolving workflow.
The organization of participants in such dynamic network can be implemented with

peer-to-peer technology, which brings the ad-hoc ability - so important for a workflow with
unknown set of actors and institutions. In this thesis a design has been presented based
on the semi-centralized model for building P2P networks and a component responsible for
tracking the participants, called α-Tracker, has been implemented. Protocol JXTA was
utilized for the implementation, because it offers good tools for organizing the network
with super peers and for enabling communication through barriers.

With the introduction of the α-Tracker to the α-Flow system, participants can form a
group, synchronize their content through a common repository and exchange routing
information needed for transferring data. Due to the deployment of one super peer per
institution a reliable network is created, which can expand dynamically and organize
itself. Participants can join or leave the network at any time, having the guarantee, that
they can reach any other of its members.

49

Bibliography

[AH] Karl Aberer and Manfred Hauswirth. An overview on peer-to-peer informa-
tion systems.

[Ber03] J.E. Berkes. Decentralized peer-to-peer network architecture: Gnutella and
freenet, 2003.

[BS] Timothy Biron and Andrew Sprouse. Peer-to-peer systems term paper.

[Dod00] Catherine Dodson. Jabber technical white paper, 2000.

[GBL+03] Indranil Gupta, Ken Birman, Prakash Linga, Al Demers, and Robbert van
Renesse. Kelips: Building an efficient and stable p2p dht through increased
memory and background overhead. In Proceedings of the 2nd International
Workshop on Peer-to-Peer Systems (IPTPS ’03), 2003.

[Hin04] Abram Hindle. Analysis of the p2p bittorrent protocol, 2004.

[JXT07a] Jxta java™ standard edition v2.5: Programmers guide, 2007.

[JXT07b] Jxta v2.0 protocol specification, 2007.

[MM02] Petar Maymounkov and David Mazieres. Kademlia: A peer-to-peer infor-
mation system based on the xor metric, 2002.

[MSA05] Ralph Meĳer and Peter Saint-Andre. Jabber, e-mail and beyond, 2005.

[NL09] Christoph P. Neumann and Richard Lenz. alpha-Flow: A Document-based
Approach to Inter-Institutional Process Support in Healthcare. In Proc of the
3rd Int’l Workshop on Process-oriented Information Systems in Healthcare
(ProHealth ’09) in conjunction with the 7th Int’l Conf on Business Process
Management (BPM’09), Ulm, Germany, September 2009.

I

Bibliography

[NL10] Christoph P. Neumann and Richard Lenz. The alpha-Flow Use-Case of
Breast Cancer Treatment – Modeling Inter-Institutional Healthcare Work-
flows by Active Documents. In Proc of the 8th Int’l Workshop on Agent-based
Computing for Enterprise Collaboration (ACEC) at the 19th Int’l Workshops
on Enabling Technologies: Infrastructures for Collaborative Enterprises
(WETICE 2010), Larissa, Greece, June 2010.

[OTG02] Scott Oaks, Bernard Traversat, and Li Gong. JXTA in a nutshell. O’Reilly
Media, 2002.

[SMLN+02] Ion Stoica, Robert Morris, David Liben-Nowell, David Karger, M. Frans
Kaashoek, Frank Dabek, and Hari Balakrishnan. Chord: A scalable peer-to-
peer lookup service for internet applications, 2002.

[TAD+02] Bernard Traversat, Mohamed Abdelaziz, Dave Doolin, Mike Duigou, Jean-
Christophe Hugly, and Eric Pouyoul. Project jxta-c: Enabling a web of
things. In Proceedings of the 36th Hawaii International Conference on
System Sciences (HICSS’03), Project JXTA, Sun Microsystems, Inc., 901
San Antonio Road, Palo Alto, CA 94303 USA, Bernard.Traversat@Sun.Com,
2002. IEEE Computer Society.

[TAP03] Bernard Traversat, Mohamed Abdelaziz, and Eric Pouyoul. Project jxta: A
loosely-consistent dht rendezvous walker, 2003.

[YL09] Jie Yu and Zhoujun Li. Active measurement of routing table in kad. In
Proceedings of the 6th IEEE Conference on Consumer Communications and
Networking Conference, pages 1252–1256, Piscataway, NJ, USA, 2009. IEEE
Press.

[ZHS+04] Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C. Rhea, Anthony D.
Joseph, and John D. Kubiatowicz. Tapestry: A resilient global-scale overlay
for service deployment. In IEEE Journal on Selected Areas in Communica-
tions, volume 22, pages 41–53, 2004.

II

	List of Abbreviations
	1 Introduction
	1.1 Motivation and Challenges
	1.2 Objectives

	2 Methods
	3 Basics
	3.1 Active Documents
	3.2 -Episodes and -Docs
	3.3 -Flow Components

	4 Requirements Analysis
	5 Peer-to-Peer Technology Overview
	5.1 P2P Architectures
	5.2 Current Technology
	5.2.1 Centralized Approach
	5.2.2 Decentralization with DHT
	5.2.3 The Purely Decentralized Approach of Gnutella
	5.2.4 The Semi-centralized Approach of JXTA

	5.3 Summary

	6 Possible Designs for the -Tracker Network
	6.1 E-Mail
	6.2 XMPP
	6.3 Purely Decentralized P2P Network
	6.4 Partially Centralized P2P Network
	6.5 Summary

	7 JXTA
	7.1 JXTA Protocols
	7.2 JXTA Architecture
	7.3 Peers
	7.4 Peer Groups
	7.5 Advertisements
	7.6 Pipes
	7.7 Messages
	7.8 Network Organization
	7.9 Security
	7.10 Summary

	8 Proposed Solution
	8.1 JXTA Edge- and Super-Peers
	8.2 -Doc-Coordinator
	8.3 Communication
	8.4 Peer Discovery
	8.5 Summary

	9 Design of the -Tracker System
	9.1 Class Structure of the Prototype
	9.2 Control Interface
	9.3 JXTA Messages
	9.4 -Doc-Coordinator
	9.5 Provide a List with All Online Peers
	9.6 Provide IP and Port of a Particular Peer
	9.7 Summary

	10 Implementation Issues
	10.1 Building Purely Decentralized P2P Network with JXTA
	10.2 Peer Configuration
	10.3 Dynamic Port Assignment
	10.4 Starting -Doc-Coordinator

	11 Discussion
	11.1 Combining Drools Pipelines and JXTA Pipes
	11.2 Security of the -Flow Network
	11.3 Headless -Doc-Coordinator
	11.4 Cache Management Optimization for JXTA Edge Peers

	12 Conclusion

