
Diplomarbeit

Konzeption und Implementierung eines
leichtgewichtigen und autonomen
Regel-basierten Systems als eine

Realisierung von "Active Properties"
im Kontext von aktiven Dokumenten

Aneliya Todorova

Lehrstuhl für Informatik 6
(Datenmanagement)

Department Informatik
Technische Fakultät

Friedrich Alexander-
Universität

Erlangen-Nürnberg

..

........
.......
.......

...

.............................

........
.......
..

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

.

...........

...........

...........
...........

............
..........

............
..........

.............
.........

..............
.......

................
.....

....................
..

......................
......................

......................
......................

.....................

.....................

......................

......................

......................

......................

......................

Konzeption und Implementierung eines
leichtgewichtigen und autonomen
Regel-basierten Systems als eine

Realisierung von "Active Properties"
im Kontext von aktiven Dokumenten

Diplomarbeit im Fach Informatik

vorgelegt von

Aneliya Todorova

geb. 25.08.1983 in Burgas

angefertigt am

Department Informatik
Lehrstuhl für Informatik 6 (Datenmanagement)

Friedrich-Alexander-Universität Erlangen-Nürnberg

Betreuer: Univ.-Prof. Dr.-Ing. habil. Richard Lenz
Dipl.-Inf. Christoph P. Neumann

Beginn der Arbeit: 01.02.2010
Abgabe der Arbeit: 16.08.2010

Erklärung zur Selbständigkeit

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der
angegebenen Quellen angefertigt habe und dass diese Arbeit in gleicher oder ähnlicher
Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer
Prüfungsleistung angenommen wurde. Alle Ausführungen, die wörtlich oder sinngemäß
übernommen wurden, sind als solche gekennzeichnet.

Der Universität Erlangen-Nürnberg, vertreten durch den Lehrstuhl für Informatik 6
(Datenmanagement), wird für Zwecke der Forschung und Lehre ein einfaches, kostenlo-
ses, zeitlich und örtlich unbeschränktes Nutzungsrecht an den Arbeitsergebnissen der
Diplomarbeit einschließlich etwaiger Schutzrechte und Urheberrechte eingeräumt.

Erlangen, den 16.08.2010
(Aneliya Todorova)

Kurzfassung

Konzeption und Implementierung eines
leichtgewichtigen und autonomen Regel-basierten
Systems als eine Realisierung von "Active Properties"
im Kontext von aktiven Dokumenten

Zur Realisierung einer organisationsübergreifenden Prozessunterstützung im Gesundheits-
wesen wird ein Dokumenten-orientierter Ansatz favorisiert. In diesem Kontext beschäftigt
sich diese Arbeit mit dem Integrationsentwurf eines leichtgewichtigen Regel-basierten
Subsystems für aktive Dokumente. Aktive Dokumente stellen in sich geschlossene Einhei-
ten dar, die die grundlegenden Bestandteile des Dokumenten-orientierten Ansatzes bilden.
Das Subsystem, das die active-properties von einem aktiven Dokument implementieren
soll, muss in der Lage sein das Dokument zu ändern und es zwischen lose gekoppelten,
autonomen, heterogenen Teilsystemen zu verteilen. Der Akzent fällt auf die Konzipierung
der active-properties anhand eines Regel-basierten Systems, das für das Triggern von
Aktivitäten zuständig ist. Die Aktivitäten bezwecken die dynamische Gestalung eines
organisationsübergreifenden dezentralisierten Workflows durch das Ändern und Verteilen
von Dokumenten.

Abstract

Design and Implementation of a Lightweight,
Autonomous, Rule-Based System Which Realizes
"Active Properties” in the Context of Active Documents

This thesis deals with the design of a lightweight subsystem, which realizes the active-
properties in active documents in the context of a distributed and decentralized workflow
approach. The subsystem is devised to react autonomously by utilizing a rule engine.
The active documents are the self-contained artifacts of a document-oriented workflow
approach, which combines the content-oriented and activity-oriented workflow paradigms
in a hybrid solution. While the characteristics of this approach in the context of
healthcare are explained, the focus is set on the conception and implementation of the
active-properties subsystem as the autonomous decisive part of this workflow. The main
functionality of the active-properties is the altering and distribution of the document they
are part of, and hence the support for a dynamic process evolution within heterogeneous
cross-organizational systems.

Contents

List of Abbreviations ix

1 Introduction 1
1.1 Motivation and Challenges . 1
1.2 The Role of the Active-properties . 2

2 Methods 5

3 Basics 7
3.1 Distributed Systems . 7
3.2 Process/Workflow . 8
3.3 Active Documents . 9
3.4 ECA-Paradigm vs. Inference Engines . 9
3.5 Conclusion . 10

4 Requirements Analysis 13
4.1 The Domain Model . 13

4.1.1 The Artifacts: α-Doc and α-Cards 13
4.1.2 The Adornment Models . 15

4.2 Overview: α-Flow Components . 16
4.3 Functional Requirements Framework . 20
4.4 Functional Requirements of the API . 21

4.4.1 Motivating the Usage of a Rule Engine 21
4.4.2 Requirements of the API . 21

4.5 Non-Functional Requirements . 23
4.6 Conclusion . 23

i

Contents

5 Rule Engines and JBoss Drools 25
5.1 Rule Engines . 25
5.2 JSR-94 . 26
5.3 JBoss Drools . 27

5.3.1 Subprojects Overview . 27
5.3.2 Drools Expert . 29
5.3.3 Drools Fusion . 31
5.3.4 Drools Flow . 32
5.3.5 Drools Guvnor . 33

5.4 Conclusion . 35

6 Proposed Solution: α-Properties 37
6.1 Architecture Overview . 37
6.2 The α-Properties Interface . 38
6.3 The α-VerVarStore Interface . 39
6.4 The Update Service Interfaces . 40
6.5 Conclusion . 40

7 System Design: α-Properties 43
7.1 The α-Model . 43
7.2 The α-PropsFacade Interface . 45
7.3 The Events Classification . 48

7.3.1 Application-specific Events . 49
7.3.2 Technical Events . 49

7.4 The Groups of Rules . 51
7.4.1 Adding a New Content α-Card 52
7.4.2 Checking the Changeability of Adornments 55
7.4.3 Changing an Adornment . 56
7.4.4 Changing Payload . 57

7.5 Propagating Updates . 58
7.6 Notification . 60
7.7 Conclusion . 61

8 Implementation Issues 63

ii

Contents

8.1 The Rule Package . 63
8.1.1 Queries . 63
8.1.2 Globals . 64
8.1.3 Functions . 64
8.1.4 Rules . 65

8.2 Distribution . 67
8.3 Monitoring . 69
8.4 Conclusion . 70

9 Discussion 71
9.1 Delimitations in the Model . 71
9.2 Prototype Optimization Options . 72

9.2.1 Networking . 72
9.2.2 Clearing up the Working Memory 72
9.2.3 Flow Features Elaboration . 72

9.3 Rules Management, Dynamic Load of Rules and Rules Propagation . . . 73
9.4 Versioning and Variants Management . 76
9.5 Participant Management . 76

9.5.1 Access Control . 76
9.5.2 Assignment of Tokens . 77

9.6 Data Synchronization . 77
9.7 Thread Synchronization and Race Conditions 78
9.8 Persistence . 78
9.9 Network Security . 79
9.10 Import and Export von "Process Templates" 79

10 Conclusion 81

A The Rule Package 83

iii

List of Figures

4.1 The α-Doc . 14
4.2 The α-Flow Subprojects Overview . 17
4.3 The Correlation between the α-Doc, the Editor, the Properties and the

VerVarStore within the α-Flow . 19

5.1 JBoss Drools System Components . 28
5.2 Drools Guvnor: Architecture (Source: [Dro10]) 34

6.1 The α-Properties Architecture . 38

7.1 The α-Doc and α-Card Models . 44
7.2 The Payload Model . 44
7.3 The AlphaPropsFacade Interface . 45
7.4 The Initialization Methods . 46
7.5 The Collaboration between the α-Properties, the α-Editor and the α-

VerVarStore . 48
7.6 The Event Model . 50
7.7 The Addition of an α-Card . 53
7.8 The Update Propagation Interaction . 59
7.9 The Update Service Interfaces . 59
7.10 The Event Listeners . 60

8.1 The Incoming Pipeline . 68

9.1 Dynamic Rule Loading Proposal . 74

v

List of Tables

7.1 The Technical Events . 51
7.2 The α-Props Groups of Rules . 51
7.3 The Adornments: Default Values . 54
7.4 The Changeability of the Adornments . 55

8.1 The α-Queries . 64
8.2 The Functions . 64
8.3 The α-Props Rules . 66

9.1 Dynamic Rule Loading Proposal: Options Comparison 75

vii

List of Abbreviations

API Application Programming Interface

USB Universal Serial Bus

PDF Portable Document Format

ECA Event-Condition-Action

DBMS Database Management System

DBS Database Systems

EDA Event Driven Architectures

DSL Domain Specific Language

DRL Drools Rule Language

JMS Java Message Service

JAXB Java Architecture for XML Binding

JPA Java Persistence API

JTA Java Transaction API

TSA Treatment Structure Artifact

CRA Collaboration Resource Artifact

JAXB Java Architecture for XML Binding

BIRT Business Intelligence Reporting Tool

ix

List of Tables

JCR Java Content Repository

GWT Google Web Toolkit

Ajax Asynchronous JavaScript and XML

BPMN Business Process Modeling Notation

x

1 Introduction

IT support in healthcare is typically limited to intra-institutional processes. It lacks in
patient data reconciliation and timely results upgrade throughout the therapy. Depending
on the disease and its treatment the number of the involved parties is likely to rise, thus
resulting in a complex and tedious communication among the participants. Therefore,
an infrastructure is needed that reflects the patient’s treatment process and the tracing
of the attendant documents. In this thesis an approach for such a infrastructure will
be presented focusing on just one part of it - the "active-properties". It is a part of the
ProMed research project, which focuses on the distributed process support in medicine
and healthcare.

1.1 Motivation and Challenges

The need of improvement in the healthcare information systems is inevitable. The classical
paper-based treatment handling can no longer fulfill the arising requirements on such in-
formation systems. The lack of adaptability as well as the support of cross-organizational
workflows have become important and challenging issues. The heterogeneous nature of
the healthcare sector implicates distributed and demand-driven system solutions. At
the same time, the autonomy of the participating parties must further on be granted.
The conventional communication between the institutions involved in a treatment cycle
does not offer enough flexibility and duly information availability. The escape of this
traditional approach is required in order to move from the boundaries of the classical to
the prospects and benefits of the evolutionary. The work in this directions promises a
great amount of quality and efficiency increase in medical care ([CWW+06], [LR07]).
Treatment episodes often demand cross-organizational partner collaboration. But

participants involved in a treatment process, as in the context of healthcare, have various
origin. There are physicians from the primary sector cooperating with physicians from

1

1 Introduction

the secondary healthcare sector and vice versa; health insurance funds and other reference
physicians are also involved. They all need sufficient information about the status of the
patient’s treatment. Consequently, a decentralized approach for the inter-institutional
process support in healthcare must be considered, which support multiple heterogeneous
distributed participating systems.
Processes are the focus of developing such an infrastructure. Processes are suited

to describe the overall control flow. But they tend to become very complex, that is
why the scope of the required solution must be reduced in granularity. Shifting the
control responsibility into the hands of the process actors themselves is considered.
More specifically that would mean assigning control from one centralized management
unit (or a single process participant, the initiator) to more fine-grained units like the
artifacts that build the data units of exchanged information - the documents themselves.
Consigning responsibilities and control to local components (á peer) has the advantages
that specific circumstances and exceptional situations can be handled directly on site.
Yet local decisions must be synchronized with the entire workflow as well. That’s why
local reactions must be distributed and taken care of on global basis.
Taking these challenges into account has led to the proposal to define long-running

processes using rules, as rules can model behavior and reason about large diversity of
data and events. The rules are incorporated into the artifacts themselves. This approach
affects the entire workflow by shifting the control to the fine-grained level of documents.
The distributed execution of rules completes the requirements.

1.2 The Role of the Active-properties

In this thesis a module that implements rule management within documents and con-
tributes to their autonomous behavior is conceived. It is responsible for the local behavior
of a document in the context of the distributed workflow. The concept of active-properties
comes from an active document management system called Placeless Documents, which
implements the idea of properties that "actively contribute to the functionality and behav-
ior" of the documents they are bound to ([DEH+00]). The role of the active-properties
in the context of a cross-organizational workflow is therefore to realize the navigation in

2

1.2 The Role of the Active-properties

the process: it works its way forth in the workflow, is in charge of changes and controls
access to the artifacts.
The active-properties are part of the active document and are responsible for its

liveliness. They stand for a function or a particular behavior that is assigned to this
document. They react upon changes, made inside the document or coming from the
outside, by triggering response actions respectively. The active-properties can be imple-
mented in various ways. Integrating a rule engine in it presents one possibility. These
properties, which are alone responsible for the behavior of their residence, allow for an
ordinary document to be autonomous. It thus helps itself through the whole process, by
modulating it on the fly; without implying the exact actors and events to be known in
advance.

In the context of healthcare, a document-based IT supported workflow is considered and
active documents are favored for the fulfillment of its objectives. This thesis concentrates
on the concept and implementation of such active-properties for document-based artifacts
used as the units of information exchange in the healthcare sector during a patient’s
treatment.

3

2 Methods

In this thesis a possible design and implementation of active-properties in the context
of active documents for a document-based workflow called α-Flow is proposed. The
thesis is arranged in seven main chapters. Beginning with an overview of the basics,
there will be given a brief description of what active documents are. In addition, the
conventional Event-Condition-Action (ECA) paradigm known from active Databases and
Event Driven Architectures (EDA) will be opposed to the concept of Inference Engines
in order to compare both paradigms in search of a solution for the implementation of
the active-properties. The α-Flow is a workflow proposal, whose main characteristic
is its distributed heterogeneous nature. Hence, some basic features of workflows and
distributed systems will also be explained.

Chapter 4 explains the artifacts that constitute the α-Flow as well as the prerequisites
for the subsystem that is to be designed. In chapter 5 the JSR-94 specification for rule
engines is outlined. A more detailed description of the JBoss Drools platform is given
as well, explaining its components, architecture and principles. By offering a better
understanding of how rule engines are designed, this outline motivates for utilizing one
in the active-properties part of active documents, which are the subjects of the α-Flow
approach.
In the following chapters 6, 7 and 8 the design and implementation of the prototype

are described in detail. Chapter 6 illustrates the modules of the α-Flow and the place
the active-properties have in it. The module that realizes the active-properties is called
α-Properties. Its responsibilities, as well as the solution principles rule engines offer
and the services expected to be provided are elaborated. The next chapter amplifies
the system design of the α-Properties. Based on the proposed architecture and the
declaration of the interfaces for the other modules, which depend on the α-Properties
module, the proposed solution is detailed. In chapter 8 some selected details about the
implemented prototype are explained. These include the application-specific rule package

5

2 Methods

conception and some further proposed solutions for the realization of the functional
requirements concluded in chapter 4.

The last chapter deals with several points of extensibility for the implemented system.
These issues concern the devised prototype as well as some further aspects that are
considered important not only for the α-Properties but as a whole in the context of the
α-Flow. Future work can build upon the efforts described in this thesis and the given
reference implementation. A brief evaluation of the achieved goals is included in the
conclusion.

6

3 Basics

In this chapter some basic concepts are introduced. An overview of distributed systems
and their characteristics, a snippet of the traditional ECA paradigm in contrast to
inference engines and some key features of active documents are represented. There are a
bunch of approaches when it comes to organizing artifacts in workflows. These classical
approaches will be contraposed to the hybrid character of the α-Flow concept.

3.1 Distributed Systems

A distributed system is represented by multiple autonomous computers, that communicate
through a computer network. Its main characteristic is that all involved units are
autonomous, but their interaction serves a common goal. Scalability and extensibility are
important requirements for distributed systems. Scalability describes the capability of the
systems to cope with continuously changing demands. Shared resource transparency and
synchronization of exchanged information units rank among the features of distributed
systems as well.
Communication and exchange of data take place among the involved units. Synchro-

nization concerns arise regarding the latter. As Leslie Lamport describes in his paper such
problems can be solved with the adoption of logical clocks [Lam78]. Lamport studied
causality in distributed systems and eventually introduced the Lamport timestamps
together with a general mechanism for managing replication. Summarized, a logical clock
counts the order of events and is able to define a "happened-before" relationships between
two events. An event is defined as the sending or receiving of a message by a process.
Lamport defines that two events within the same process always have a fix order. If a
message (event a) is sent by one process, than it is stated that a has happened before
the receipt of that message (event b) by the other process. Events are assigned numbers,
that are incremented in the order of their occurrence. While the innovative conclusions

7

3 Basics

of the Lamport timestamps offer a solution, synchronization and management of multiple
replicas are still major issues in distributed systems.

Propagating updates of information about shared resources is an important feature of
distributed systems. When designing a distributed system, some aspects in this regard
must be considered. Such aspects are the format of the propagated changes, the policy of
distribution and the definition of the set of the recipients. If a change occurs, there are
the following possibilities to upgrade the rest of the concerned parties in a distributed
system: 1) the altered object itself is sent out; 2) only a message, stating the invalidity
of the old version, is sent; or 3) the operation procedure that led to the changes is
propagated enforcing the same result on each existing replica. There two paradigms how
such changes are distributed: either they are pushed to the others, or they get pulled
from the source. Last but not least, the set of the affected peers needs to be defined:
changes can be either broadcasted to all peers involved in the distributed system or
multicasted to a selected subset of them.
Due to the complex nature of distributed systems some security issues arise to their

requirements. Among others, integrity, availability and confidentiality are accentuated.
Integrity defines that changes to assets (such as hardware, software and data) can be
made only in an authorized way and improper alterations or access should be detected
and taken care of. Confidentiality concerns the authorization and rights management of
users, who manipulate these assets. The availability aims to assure that the peers or
certain services they offer are constantly available.

3.2 Process/Workflow

A process or a workflow describes the order in which a series of steps needs to be
executed. Two types of workflows are distinguished: entity-oriented and activity-oriented
workflows. The entity-oriented (or content-oriented) workflows focus on the state of an
entity. Entities are always in one specific state. If certain conditions are met, transitions
from that state to another out of a set of possibilities take place. Such systems place the
content object (for example a document) in the center of the workflow process. Each
entity has an initial state and a destination state for each transition. Activity-based
workflows concentrate on the activities that have to be done. As soon as an activity has

8

3.3 Active Documents

been completed, the process definition specifies what are the next activities that need to
be done. The central point is not the document, but a task. In this approach process
definitions can be describe without involving any kind of content.

Aiming a solution for the inter-institutional heterogeneous nature of healthcare, both
approaches are considered as insufficient. Traditional workflow management systems
consider predefined workflow schemata and are mostly instantiated by a central enactment
unit. A comprehensive prospective conceptualization of a workflow, which is ad-hoc,
decentralized and operates with initially unknown set of actors, states and transitions, is
needed. Further, support for content work and support for coordination should also be
regarded separately ([LED+99], [NL09]). The document-oriented approach proposed in
[NL09] addresses these requirements.

3.3 Active Documents

An active document is a document that allows a direct interaction with itself ([NL10]).
Therefore, documents become active documents if they are assigned with active-properties
(see 1.2). Active documents allow infrastructures to adapt to variations in application
demands, or provide an infrastructure for interactive document applications. For example,
they can be used in a distributed infrastructure, in which activity is directly associated
with documents, rather than being locked inside applications, that are invoked to process
them ([DEH+00], [HM00]). Besides, active documents utilize context information and
distributed resources to support users ([WKJ+01]).

3.4 ECA-Paradigm vs. Inference Engines

Event-Condition-Action (ECA) rules are a general formalism for modeling the funcionality
of an active Database Management System (DBMS). An active database is a database
with the event monitoring scheme for detecting manipulation activities of data, and
automatically executing actions in response when certain events occur and particular
conditions are met. Active databases support the creation of triggers ([DKM86], [MD89]).
ECA rules generalize mechanisms such as assertions, triggers, alerters, database

procedures, and production rules. Events are typically database operations (such as

9

3 Basics

delete, update, insert), temporal events, signals from user processes, a combination
of these. Conditions are retrieved from defined queries over the persisted data in the
database. Actions are normally the invoking of a program or a procedure inside the
database ([DBM88]).
ECA Rules can be applied for distributed active Database Systems (DBS) as well.

Event detection and event processing in the form of ECA rules are distributed across
the network and can be configured into event handlers that implement specific policies
([KL98], [HS09], [ACJZ08]).

Inference engines on the contrary follow a different approach. They derive conclusions
from an initial set of given facts, stored in a knowledge base. Inference engines define
a subset of reasoning engines. They apply heuristics, based on logic and statistics to
known facts or presumed hypotheses in order to draw conclusions or prove an assumption.
Commonly, in inference engines a forward-chaining or a backward-chaining algorithm is
used (see also section 5.1) to derive implications. By this approach, the separation of
knowledge (in the form of predefined rules) from the control unit (the inference engine)
is distinguished. An inference engine is an important component of expert systems
([Jac98]), software agents or rule-based systems. However, reasoning over facts and
formulating certain conclusions based on the retrieved knowledge does not necessarily
leads to the firing of specific actions.

3.5 Conclusion

In this thesis a decentralized document-oriented workflow approach is explained. The
thesis aims to design a component, which will contribute to this approach by implementing
the active-properties of the documents. Therefore, an overview of some basic topics
like distributed systems, processes and active documents was given in this chapter. In
addition, a comparison between two paradigms: traditional ECA rules and inference
engines, was made in order to cover the possibilities for an approach, that best suits
the pursued objectives of the active-properties module to be designed. Inference engines
do not regard the invoking of actions as a reaction to the derived conclusions, whereas
the traditional ECA paradigm offers actions. The ECA rules on the other hand reach
decision breakpoints in a simple way without being able to cover complex correlations

10

3.5 Conclusion

of events and facts. A hybrid combination of both paradigms is needed, in order to be
able to take complex input knowledge under consideration, match it with conditions and
rules in order to reach a conclusion, and as a result be able to trigger a corresponding
reaction.

11

4 Requirements Analysis

This chapter provides the requirements for the intended component. The main idea of
the α-Flow is that active documents should become the primary means of information
exchange within a treatment process. Furthermore, they should offer ways to be system-
atically classified. Main assumption is that the sets of participants and workflow steps
cannot be initially known. This feature must be taken under consideration as well as
non-functional requirements like the light-weight of the subsystem. A coarse overview of
the artifacts in the α-Flow and its components is also expounded below. The role of the
adornment models and the structure of the artifacts are described as well.

4.1 The Domain Model

The domain model can be explained through its two-fold meaning - processual and
documentary. The abstract term of an α-Flow illustrates a dynamic-shaped workflow,
where on the other hand the documentary approach adopts the concept of electronic
documents, called α-Docs, as the primary means for information transfer. The α-Flow
has no foreseen structure, as it progressively evolves it describes the past and the next
steps of a treatment episode by means of coordination artifacts.

4.1.1 The Artifacts: α-Doc and α-Cards

A distributed process characterized by a particular goal and constructed of a bunch of
distributed activities is called an α-Episode ([NL09]). There are many episodes within
the α-Flow depending on the complexity of the medical condition that is treated. Such
α-Episode is represented by one α-Doc. In the α-Flow approach, the α-Docs are assigned
with active-properties. The term ’α’ itself relates to the active-properties bound to it.
An α-Doc is a document and application at the same time.

13

4 Requirements Analysis

The artifacts within an episode have two-level structure. There is always one α-
Document on top, which has children called α-Cards (see figure 4.1). All cards represent
passive documents (payloads) enwrapped in an α-Adornments-Descriptor. A replica of
each α-Doc resides on the desktop of every participant concerned with the α-Episode.
There are many replicas of the α-Doc per α-Episode (see figure 4.3), proportionate to
the number of the involved participants.

α-Doc

α-Ep-ID

N
o

d
e

X

coordination

content

TSA

α-Card

N
o

d
e

X

CRA

α-Card

N
o

d
e

X

R
A

α-Card

...

N
o

d
e

X

RV
M

α-Card

N
o

d
e

X

RR
M

α-Card

α-Ep-ID

N
o

d
e

Y

TSA

α-Card

N
o

d
e

Y

CRA

α-Card

N
o

d
e

Y

R
A

α-Card

...

N
o

d
e

Y

RV
M

α-Card

N
o

d
e

Y

RR
M

α-Card

NodeX α-Doc NodeY

coordination

content

payload

α-Adornments-Descriptor

replicaoriginal

Figure 4.1: The α-Doc

There are two types of α-Cards: coordination and content. The coordination artifacts
are mandatory and, currently, there are exactly two of them: the Treatment Structure
Artifact (TSA) and the Collaboration Resource Artifact (CRA). They are presumed
to exist upon the creation of any α-Doc. These two coordination cards are coequally
shared by all participants, because of the distributed nature of the application. The
TSA-Payload contains a list of all content α-Cards in the α-Doc and a list of all known

14

4.1 The Domain Model

relationships1 between the content cards. The TSA card provides hence information
about the overall workflow schema. The CRA-Payload on the other hand consists of a
list of all participating parties relevant for the α-Episode. A participant can be any actor,
who is somehow involved in the treatment episode. Its domain model wraps information
about the actor themselves, the role they are taking in the workflow, the institution they
are representing and the network characteristics of their workplaces. Both the TSA and
CRA α-Cards are used for structuring content documents and consolidating coordination
information ([NL09]).

In contrast to the coordination cards, the content α-Cards can be (initially) none, one
or many. They have the same structure as the coordination cards, but are of a different
fundamental semantic type (→ content). The content artifacts bear in their payloads
treatment results in the form of medical papers. A content α-Card is created at first
locally. The α-Card is not shown to other participants until it is marked as public. A
public α-Card implies that each distributed replica of it is made visible to those who are
concerned with its payload.

4.1.2 The Adornment Models

An α-Card includes a set of adornments for the payload. The adornment models reveal
properties (or attributes) of the α-Cards, such as validity and visibility, as well as other
process-relevant metadata ([NL09]). The adornments are defined in the α-Adornment-
Descriptor.
Each α-Card has an identifier, which is unique for the entire α-Flow, and it can

be given a fully descriptive name. As already mentioned all α-Cards split into two
fundamental types: coordination and content. This classification is one of the attributes
in the set of adornments for each α-Card. A further attribute the syntactic payload type
contains the format of the payload. The owner of the card (the subject) and the patient
(the object) are also recorded as adornments in the α-Adornment-Descriptor.

The model distinguishes between the visibility and the validity of an α-Card. In
traditional database-centric approaches, these two properties are strictly related to one

1 A relationship exists, if producing one card requires another card to be available. For example, a
result report on diagnostic findings has dependency to a referral voucher in healthcare.

15

4 Requirements Analysis

another. Therefore, objects made visible are assumed to be valid. In this application it
is not implicitly the case. An α-Card can already be public (i.e. visible to other process
participants), but its content (the payload) can still not be valid; and vice versa. An
α-Card marked as invalid declares that its payload provides interim information.
Cards have a semantic type. An α-Card can be a referral voucher, a result report

or the like. The set of possible semantic types is determinist, but extendable. It is
constituted according to the paperwork conventionality for a therapy.
Along with visibility and validity of the card, one can mark if a new version and/or

a new variant of the payload of the α-Card has been published. The versions and
presumably the variants are managed additionally. A versioning attribute signifies if the
card is currently under version control. Only if this attribute is set, the version counter
is incremented. The version can be incremented only if a payload exists for the α-Card
and respectively versioning has been enabled. There isn’t any special management of
variants for now, but such is intended to be devised in the future.

Further, there are two more tags for the status of an α-Card. They indicate if the card
is marked as deleted or as deferred. If these attributes are set to false, than the α-Card
is referred to as "in use" and it can be operated on. If the card is marked "deleted", all
attempts for manipulation on it are declined. The card itself is never actually deleted, it
is only preliminary disabled. A deferred card is a card whose fulfillment is not possible
for indefinite time, yet the underlying impediment is not part of the model.

In addition, there is a label for priority which can be assigned to an α-Card. Possible
values are high, normal or low. The priority attribute is important for the user at most.
Cards with high priority are expected to be handled first. In this context a dueDate can
also be set for determining a deadline for providing the artifact.

4.2 Overview: α-Flow Components

Although the α-Flow is still under construction, there are some components, which are
already advanced enough to be entitled as being in their mature state. In the following
a brief overview of the α-Flow modules, as they are currently conceived, will be given,
with an accent on the active-properties component and its role in the flow.

16

4.2 Overview: α-Flow Components

A coarse overview of the α-Flow architecture currently includes seven basic components:
the α-Editor, the α-Properties, the α-Model, the α-Injector, the α-VerVarStore, α-
Institutions and α-Overlay-Network. A module outline is offered in figure 4.2. Most of
the α-Flow components reside within the peer and are node-centric: the Editor, the α-
Properties, the Injector and the VerVarStore module. The abstract α-Model is significant
for all components, as it constitutes the domain presentation. The α-Institutions and
α-Overlay-Network modules coordinate and keep track of all members in the network.
Their roles in the α-Flow are comprehensive. In the following the basic functions of the
α-Flow components are explained.

α-Injector

α-Model

α-Institutions

α-Properties

α-VerVarStore

α-Overlay-Network

α-Editor

Figure 4.2: The α-Flow Subprojects Overview

In the Model subproject the artifacts, as described in chapter 4.1, are designed. Their
representation and the prototype design of the adornment models are constituted here.
This model of an α-Card is temporary. The coordination and the content card as well as
the model of their payload are kept simple. They fulfill the minimum requirements for
the domain model.

The α-Injector assigns a passive document (payload) active qualities. It prepares the
passive payload with the set of adornments (as process-relevant metadata attributes)
and then includes it to an existing α-Doc or starts a brand new α-Doc with the new
document file as the first α-Card (i.e. its payload). This component injects life to passive
documents. It enwraps the passive document and bestows it with its own editor and

17

4 Requirements Analysis

logic (active-properties), in this way making it an integrated and active element of a
distributed process.

A further component is the α-VerVarStore. It supports the payload administration of
the α-Cards and the storage of the artifacts. The payload of either a content α-Card or
the coordination α-Cards is governed by this module, managing versions and variants
separately. It caches the changing payloads during run-time and persists the α-Doc, the
α-Cards and their payloads locally on the disk at the end.
The α-Institutions component manages all the institutions, the potential actors and

their roles in the entire α-Flow network. Its purpose is to support the search for available
actors for a certain process role.
The α-Overlay-Network deals with the peer management. The participants are

organized in the institutions they represent. Each institution has a super-peer - that
is a server-like computer, which controls the flow between the peers and knows the
super-peers of the other institutions. It allocates the recipients that are online, in order
to enable a direct multicast to them. For all the peers, that are offline, this super-peer is
always available, so they are able to fetch the newest updates on pull-principle basis on
demand. The objective is to realize the distinctive offline characteristics of the application.
The primary function of this component would be to provide a Recipient List to the
α-Properties module on demand. In this list the network information of all super-peers
of all institutions, that are involved in the specific treatment episode, is presented.
The α-Institutions and the α-Overlay-Network components are only conceptually

elaborated so far and they are still the subject of future work. In order to provide the
functions they have in the α-Flow, a simple substitute implementation was embedded in
the prototype of the α-Properties.
The Editor allows the user to view, manipulate and edit the active document. The

active-properties module (here called: α-Properties) lies underneath the Editor and
is responsible for the most of the logic. Each α-Doc has its own Editor and its own
α-Properties. Figure 4.3 outlines the correlation between the α-Episodes within an
α-Flow per distinct patient. The episodes are mapped to α-Docs, which in turn are
each equipped with its own editor (α-Editor), storage manager (α-VerVarStore)and logic
(α-Properties). On the desktop of each participant reside a replica of the attendant
α-Doc of every episode in which the participant is involved.

18

4.2 Overview: α-Flow Components

α-Flow: Patient X

α-Ep 1 α-Ep 2

α-Doc

α-Editor

α-Properties

α-

VerVarStore

α-Doc

α-Editor

α-Properties

α-

VerVarStore

α-Doc

α-Editor

α-Properties

α-

VerVarStore

α-Doc

α-Editor

α-Properties

α-

VerVarStore

α-Doc

α-Editor

α-Properties

α-

VerVarStore

α-Flow: Patient Y

α-Ep 1

Desktop @ Doctor A Desktop @ Doctor B Desktop @ Doctor C

Figure 4.3: The Correlation between the α-Doc, the Editor, the Properties and the
VerVarStore within the α-Flow

The α-Properties are the focus of this thesis. They represent this part of the α-Flow,
which implements the most of the coordination logic. They are present in every α-Doc,
and can only see and work with the artifacts of this container or the distributed replicas
of it. The α-Properties are not global for the Flow, but address always only one specific
α-Episode. There are three main tasks, this component is responsible for: 1) triggering
the α-Card publication based on the visibility adornment; 2) enforcing the versioning
of the α-Card depending on visibility and validity; and 3) consequently propagating
changes to the other participants when the card is published ([NL09]).

19

4 Requirements Analysis

So far it is assumed that every participant, interested or directly involved in an α-
Episode already has a copy of the corresponding α-Doc. How these α-Docs are going to
be distributed is still an open issue, but it is considered to take place out-of-the-system;
that is it will be send as an attachment in an e-mail, or will be physically transported
with a USB1 flash drive, or the like.

This chapter aims to introduce what is relevant for the design of the α-Properties
module and what requirements it must meet. The first two sections gave an overview of
the domain model and the place of the α-Properties in the context of α-Flow, whereas
the next sections outline the concrete functionality this component must implement.

4.3 Functional Requirements Framework

The α-Flow project aims for an IT-supported document-based workflow within a dis-
tributed environment of heterogeneous systems. In the following, the functional require-
ments for the overall approach are outlined, with the special focus on the active-properties
component. Many considered options are motivated by the idea of utilizing a rule engine
for the execution of its functionality.

Distribution - First of all, the workflow takes place between participants that reside
on physically scattered workplaces. Consequently, this should be considered in the
design. It is expected that the system is able to distribute locally occurred changes
to all concerned participants and accordingly receive such changes. Therefore, there
is a need for a distributed rule execution. The propagation of change requests,
artifacts and rules should be warranted.

Autonomy - The autonomy of the α-Docs is presumed. Having documents that are
able to interact with themselves autonomously is what makes the communication
on peer-to-peer level among distributed heterogeneous systems possible. Besides,
α-Docs should have the ability to react entirely autonomous to the user’s activities
and be in control of the process progression.

Monitoring of changes - It is important to provide a monitoring module, which should
be in charge of keeping a log of the occurred events. It has to be assured that

1 Universal Serial Bus (USB)

20

4.4 Functional Requirements of the API

actions triggered in the α-Properties subsystem reach the user in the form of
notifications about relevant changes in the artifacts throughout the entire workflow.

There are some further aspects, that must be ensured as they follow as side effects to
the main functional requirements. The first issue regards data synchronization among
the distributed replicas of the artifacts. The second necessity concerns the management
of different versions and variants of the artifacts.

4.4 Functional Requirements of the API

Beside the global functional requirements, there are some extra requirements for the
Application Programming Interface (API) of the α-Properties. They are described in the
following by reference to the consideration of utilizing a rule engine for the α-Properties
module.

4.4.1 Motivating the Usage of a Rule Engine

The α-Document is postulated as an active document. As such, its autonomy and the
ability to decide alone what happens to itself are its basic features. Applying a rule
engine in the heart of it, that realizes this resoluteness, is very intuitive. Rule engines are
capable of reasoning over facts and picking up responsive actions based on them. They
allow for deploying application-specific rules dynamically and have scalable architecture.
The latter has the advantage, that they can be implanted in a complex application,
become easy a part of it and end up supporting its logic as well. Further, rule engines
enable the handling of repetitive tasks. Taking these features into account has resulted
in considering a rule engine for the system design of the α-Properties module, as these
functionalities are presumed to be implemented in it.

4.4.2 Requirements of the API

Reasoning over facts, if user triggers event or if some other peer sends an
event: A classification of events and the predefinition of the possible effects expected
upon their occurrence by means of rules should be provided in order to represent the
required behavior of the active documents. A package of rules, which meet the current

21

4 Requirements Analysis

minimum functional expectations of the application, should be developed. The rule
engine uses these rules in order to respond to user-triggered events. These responses
should include reasoning over data, changing the data, inserting data in the workflow,
propagating actions back to the user interface and propagating events out of the α-Doc
instance to all its replicas.

The rules expect certain requests from the user. Upon their invoking, they are forwarded
to the rule engine where the actual actions take place. The user is allowed to trigger the
following events: changes in the adornments, the addition of a new content card, addition
and changing of a participant, addition of a relationship between cards, attaching of
payload to content cards, selection of an α-Card or the whole α-Doc for viewing or
editing. The proposed rules must be designed with respect to these application-specific
events.
Managing versions of the artifacts: In the declaration of the rules, versions and

management of versions must be considered. Same intention is deemed for the variants
of the artifacts, although the concept of variants is not fully defined yet and therefore
cannot be implemented.
Changes get propagated: Another task of the α-Properties component is the

propagating of changes through the network to all participants’ nodes over to the
concerned parties. Preparing the artifacts for the transmission (JAXB-Binding) and the
transmitting to peers itself must be also realized, as a preliminary solution while the
α-Overlay-Network module is not implemented.
The Editor is notified of changes: Beside the customary functions, the α-

Properties must be able to send notifications about actions that take place within
it to the Editor. It should be possible to give the Editor feedback, if something in the
meanwhile altered the current state of the α-Document. The gathered information helps
keeping a log of the occurred events.
Enables Queries over the current state of the artifacts per α-Episode (on

fine-grained basis): Another functionality the prototype should provide is the query of
artifacts in the pool of current facts. What is the state of the α-Doc, how many content
cards it currently consists of and all kind of other information about the facts must be
retrievable on demand.
Providing dynamical upload of rules: Using a rule-based system has the advantage

that the application-specific rules are totally decoupled from the domain model and can

22

4.5 Non-Functional Requirements

be replaced, altered or extended without any further ado. In this context providing a
dynamic update of rule packages should be provided. The system ideally offers ways to
load new knowledge dynamically at run-time.

4.5 Non-Functional Requirements

Apart from the functional features the system should offer, there are some non-functional
requirements about how these features should be implemented as well. Such non-
functional requirements are the lightweight nature of the application and the timely
responses it should deliver.

Light-weight - In order to classify a system as lightweight some aspects must be present.
A lightweight system can mean different characteristics. In our context lightweight
means on the one hand that it does not need any explicit installation, that is it
is self-contained. Lightweight applications are characterized with quick start-up
time and the usage of few or zero external requisites. On the other hand the
application size must be held minor. Furthermore, lightweight systems can also
mean to be easy to learn and work with, due to an intentionally limited scope of
functions. Technically, light-weight is implied if the application includes few or zero
internal dependencies. Lightweight systems are often very flexible, easy to tailor
and extensible. Consequently, the fulfillment of these characteristics is presumed.

Instant reactions - By reasoning over facts and triggering of the action part of matched
rules reactions are expected to take place instantly. The propagation of the events
and artifacts should also follow promptly, even though the propagation is subject
to network latency.

4.6 Conclusion

The goal of this thesis is to design and implement a prototype solution for the active-
properties component of the α-Doc in the context of the α-Flow. The pursue of this
goal implies the definition of the system requirements. This chapter offers a background
review of the domain model and an overview of what the system should accomplish as
well as its quality requirements. Since the interaction between the user (through an

23

4 Requirements Analysis

editor) and the α-Properties is intense and the users actions are of great importance for
the building of a knowledge base, some further application-specific requirements are also
taken into account.

24

5 Rule Engines and JBoss Drools

The decision to apply a rule engine in order to meet the requirements was motivated
by the advantages they offer in a dynamic environment. A rule engine can provide a
flexible way to describe and modify rules over time. Furthermore, a rule engine provides a
structure for factoring the logic out of the rest of the system, aiding the effort to separate
concerns. Moreover, using a rule engine is preferable, if rules are likely to change over
time due to the nature of the application. In this thesis the prototype to be designed fits
such requirements. Therefore, a rule engine is to be utilized for it. In the following an
overview of what rule engines are and how they are designed, using the example of the
JBoss Drools platform, is discussed.

5.1 Rule Engines

Rule engines provide means for declarative programming and offer tools to indite rule
sets outside the application code. Their purpose is to react upon input in order to
produce some output. They can either execute interpreted rules directly or just delegate
the interpretations to another application component responsible for the handling.

A rule engine is an interpreter for if/then statements, called rules. The if -part of the
rule contains conditions, which must be fulfilled in order to trigger the second (then-)
part of the rule: the actions. The input to a rule engine are the rule execution set and
some data objects (called facts). The facts represent the current state of the application
domain objects. The output depends on the input and can be one of the following: the
same, but slightly modified data objects; some other new constructed objects or the
invocation of functions, which appoint certain services, like sending a notification or
propagating facts.
A rule engine typically has the following components. There is a Knowledge Base

(or Rule Base), which contains all the predefined rules. Coexisting, there is a Working

25

5 Rule Engines and JBoss Drools

Memory where all current facts are held. The rule engine operates on these facts when
a rule is fired. There is also a Pattern Matcher, which decides, based on the facts in
the working memory, which rules qualify to be applied. The inference engine is used to
find out which from the chosen rules should be activated. The activated rules are then
queued in the Agenda. The process of ordering the Agenda is called conflict resolution.
Once the order of the Agenda is set, the first rule is fired. After a rule is fired the new
state of the facts is again reasoned over, in case vital changes have occurred as a result
of the triggered actions. The entire process is constantly repeated until there are no
further rules assigned for execution. The main components of a typical rule engine can
be seen among others in figure 5.1 below. The figure depicts their connection using the
example of the JBoss Drools platform.

Rule engines either implement a forward- or a backward-chaining strategy, or sometimes
both. The forward-chaining method is called data-driven, whereas the backward-chaining
method is labeled to be goal-driven. They differ in the way they reason over facts.
In forward-chaining mode all available facts in the Working Memory are taken under
consideration for a start. Subsequently all applicable rules are triggered. Their actions are
then used as input for the qualification of other rules until a certain goal is accomplished.
Forward-chaining rule engines are suitable for deriving high-level conclusions based on
simple input facts, thus resulting in the attempt to apply as many rules as possible.
Whereas by the backward-chaining approach, the starting point is the goal (or the
hypothesis). This goal is presumed by the inference engine, which then consequently
tries to determine, if there are facts in the Working Memory to prove the truth of the
asserted conclusion.

5.2 JSR-94

JSR-94 is the Java Specification Request for a Java Rule Engine API, [JSR02]. It defines
a standard programming interface for developing and using a rule engine. It specifies
the interfaces through which rule execution sets are invoked. Furthermore, it constitutes
how these rule execution sets are loaded from external resources and registered for use.
It does not determine the syntax of the rules and the semantics of their interpreting, and
nor the mechanism by which rules are transformed for use by the rule engine.

26

5.3 JBoss Drools

The JSR-94 specification standardizes a set of fundamental operations, such as parsing
rule sets, adding objects to the working memory, firing rules and getting objects from the
engine as a result. The specification provides two main parts, a rule administration API
and a rule runtime API. The first is used for loading and managing rule sets. Whereas
the latter is for executing rule sets by using a rule session.

A rule session is a runtime connection between a client application and a specific rule
engine and is always associated with a single rule execution set. A rule session reserves
resources for itself and thus must be explicitly released when not needed. A rule session
can be stateful or stateless. Within stateful sessions a prolonged interaction with the
rule execution set is allowed; input objects can be progressively inserted into the session
and output objects can be queried repeatedly. Besides, the session is kept alive during
the entire interaction until it is deliberately disposed.
A rule execution set is a collection of rules for solving a specific task. It has some

metadata, such as a unique name and a description. Rules should be written in a
standardized way, but up until now there is no such standard. Normally, they are written
in descriptive languages.

5.3 JBoss Drools

In this thesis JBoss Drools was used to represent the rule engine aspect of the α-Properties.
JBoss Drools is JSR-94 compliant and it extends the standard with several additional
features. The JBoss Drools is a platform for behavioral modeling. It does not only offer
an inference engine (cf. 3.4) but provides a reacting system, which triggers actions, effects
changes and persists data, as well. JBoss Drools combines three modeling techniques -
Rules Management, Process Management and Complex Event Processing.

5.3.1 Subprojects Overview

Drools consists of four modules aiding to realize these concepts: Expert, Fusion, Flow
and Guvnor. They are all integrated in the same engine. Consequently, when a new
feature is added to one paradigm, it is accessible to the others as well. Depending on
what functionalities are needed one may use one, more or all of the paradigms. Their
separation is more logical than technical.

27

5 Rule Engines and JBoss Drools

Session

Knowledge

Base

ResourceFactoryKnowledge Builder

KnowledgeAgent

WorkingMemory

FactHandle

FactHandle

FactHandle

FactHandle

Agenda

Working

Memory

Entry

Point

Domain object (fact)

Domain object (fact)

Domain object (fact)

KnowledgePackage

KnowledgePackage

KnowledgePackage

EXIT

select

rule to

fire

activation

activation

activation

activation

.drl

.dsl

.pkg

activation

Working Memory

Event Listener

Agenda

Event Listener

Figure 5.1: JBoss Drools System Components

Drools Expert represents the actual rule engine. It defines the basic features such as
how to build a Knowledge Base, how to write the rules, how to add Event Listeners on
both the Working Memory and the Agenda, how to include a Knowledge Agent, allowing
extending the Knowledge Base on demand, and last but not least how to configure all
these components. Drools Expert serves as a basis for the α-Properties subsystem.
The Fusion project concerns temporal reasoning and event processing. Rules are

written that monitor events over periods of time, adjust average values, obtained through
repeated event occurrences, and react upon excession of predefined thresholds. Based on
the gained values certain actions get executed.

28

5.3 JBoss Drools

The Flow project depicts activity-oriented workflows and defines control flows for
processes, in which the occurrence of certain states or the accomplishment of a task decides
on the further steps in the workflow. This reasoning is achieved through integration of
rules within the workflow.

The Guvnor represents a centralized Knowledge Base repository, where a great number
of rules, models and processes can be managed. It offers a web based GUI and an
editor hence enabling non-technical domain experts to operate on the rules intuitively.
Moreover, all the artifacts can be versioned and their access can be controlled as well.
A detailed view of the features, which these subprojects implement, is given in the

following subsections.

5.3.2 Drools Expert

Drools Expert defines all actual features of the rule engine. An overview of the components
of the rule engine is outlined in figure 5.1. It has a Knowledge Base built with the
help of the Knowledge Builder, which parses resources (knowledge definitions) and
builds Knowledge Packages. A Knowledge Package is a collection of compiled knowledge
definitions, such as rules, processes and models. Knowledge Packages are self-contained
and serializable, and they form the basic deployment unit. These packages constitute
the Knowledge Base.
The Knowledge Base does not contain any data. From the Knowledge Base many

Sessions can be created and they are the units that retain the actual facts. There are
two types of sessions: StatefulKnowledgeSession and StatelessKnowledgeSession. Their
meaning is the same as discussed in respect of the standard in section 5.2.
The Working Memory can be partitioned. The WorkingMemoryEntryPoint provides

the methods for the inserting, updating or retrieving of facts into (a partition of) the
Working Memory. There is one default WorkingMemoryEntryPoint, but in case of
complex event processing, as it is provided by Fusion, there are respectively as many
WorkingMemoryEntryPoints as partitions.

Apart from the components, which are common for all JSR-94 compliant rule engines
there are some further terms in Drools worth describing. An extract is given in the
following. The selection includes concepts that are either specific for Drools or particularly
relevant to the designed prototype.

29

5 Rule Engines and JBoss Drools

Rule Package - Rule packages are defined by the user. A rule package is a collection
of imports, globals, functions, queries and the rules themselves, specified in a file.
They get written in one file, because they have semantically something in common,
i.e. the solving of a specific task. The package represents a namespace, which must
be kept unique. A single Knowledge Base may contain more than one package
built on it. Functions in rule packages are used in order to import semantic code
into the rule file and in that way separate it from the application logic. Queries
can be formulated in order to retrieve desired status information from the Working
Memory. The definitions of the rule packages in Drools can be written in either
XML, DSL1 or DRL2. The rule packages are actually the rule execution sets known
from the JSR-94 specification.

Groups - Rules can be arranged into groups. There can be Agenda Groups, Activation
Groups and Ruleflow Groups. Agenda Groups allow to partition the Agenda
providing more execution control. Only rules in that Agenda Group, which has
acquired the focus, are allowed to fire. The MAIN group has per default the focus
of the Agenda. If no other group has the focus set on it, the rules in the MAIN
group are matched for hits. In an Activation Group only one rule can fire, and
after that rule has fired all the other rules in this group are cancelled from the
Agenda. Rules in a Ruleflow Group can only fire when the group is activated. The
group itself can only become active when the elaboration of a ruleflow diagram
reaches the node representing the group ([Dro10]). Ruleflow Diagrams concern
Drools Flow.

Conflict Resolution - Conflict resolution is needed if there are multiple rules activated
on the Agenda. As firing a rule may have side effects on the state of objects in the
Working Memory, it is essential for the rule engine to know in what order the rules
should be fired. The default conflict resolution strategies employed by Drools are:
salience and LIFO (last in, first out). Setting salience (or priority) is manual, in
which case the order of the activated rules is in the control of the user. Rules with
high priorities are given higher salience numbers than the other rules. Rules with

1 Domain Specific Language (DSL)
2 Drools Rule Language (DRL)

30

5.3 JBoss Drools

higher salience will be preferred. If no salience is given, the rules are assigned a
Working Memory Action counter value. All rules created during the same action
get respectively the same value. The execution order of such rules is arbitrary. In
general, it is recommended to assign rules with custom salience in order to enforce
a particular order, which is thus ensured to be always kept.

Event Listeners - Event Listeners provide a monitoring component for the application.
They observe the activities in the Working Memory and the Agenda and can be
used for debugging or logging.

The Knowledge Agent - The Rule Agent (or Knowledge Agent) monitors resources
(knowledge definitions). They are defined in a change-set file, where their locations
are stated. The Knowledge Agent provides automatic caching and loading of these
resources. It can update and rebuild the Knowledge Base, in case the monitored
resources change. It is performed on pull principle, taking place any given period
of time. The pull-period and some other configurations are made through a
property-file. Changes of the change-set file itself are however not reflected.

The Pipeline - The concept of pipelines helps the automation of getting objects into
and out of the Working Memory. Services like Java Message Service (JMS) and
transformations of the transported objects for Smooks1, JAXB2, XStream and
jXSL3 are provided as well.

5.3.3 Drools Fusion

Fusion extends the Drools Rule Engine with the concept of events. Drools Fusion is
the module responsible for enabling event processing capabilities. It selects a set of
interesting events in a cloud or stream of events. According to the Drools’ definition,
an event is "a record of a significant change of state in the application domain" [Dro10].
Events (in Drools) are referred to as a special type of fact, which has a temporal aspect.
Events are characterized by temporal constrains and relationships. The detection of their

1 An extensible framework for building applications for processing XML and non XML data (CSV,
EDI, Java etc) using Java.

2 Java Architecture for XML Binding (JAXB)
3 A small Java library for writing Excel files using XLS templates and reading data from Excel into

Java objects using XML configuration.

31

5 Rule Engines and JBoss Drools

occurrence or their absence can be integrated in the condition part of rules, queries and
processes. Fusion accomplishes to detect potential relationships (patterns) between the
events and takes appropriate actions based on them.
If over a certain period of time events are considered old enough, they are retracted

from the session. This way a memory management is granted, and the release of any
resources reserved by this event is accomplished. Teaching the rule engine when enough
time has passed can be done explicitly or implicitly.
Drools Fusion uses Sliding Windows for capturing events within moving windows of

interest. Rules can be created in order to aggregate values over a period of time. There
are two types of sliding windows: sliding time windows and sliding length windows.
The sliding time windows consider events that happen within a certain slice of time,
whereas the length-based windows regard the last x occurrences of events. Due to the
timestamps every event can be associated with a sliding window. Use of sliding windows
is only possible if the event processing mode is set to stream. In cloud mode there is no
concept of "now" and therefore events can not be compared, although they still have their
timestamps. In stream mode the events are time-ordered and the streams themselves are
synchronized through the use of a session clock. Cloud is the default processing mode.

5.3.4 Drools Flow

The Flow module realizes a seamless combination of process control flows and rules.
Rules decide which steps in a process should be invoked and hence make it possible to
leave space for decision support within processes, particularly if exceptional cases occur.
In general, the intention of Drools Flow is very similar to the intention of the α-Flow
concept: rules are used to dynamically shape a workflow. The difference between Drools
Flow and the α-Flow in regard to activity-oriented workflows is amplified in [NL09].

As rules are used to handle specific exceptional steps in a process, changes in behavior
on such crucial parts are made without having to change the process itself. If required
adaptations or altered application requirements arise, modifying the rule packages will
accomplish the necessary agility. Most of all, definitions of rules and processes in Flow
are done separately, thus, evolving steps in the life cycle of rules do not affect the life
cycle of the processes and vice versa. Further, Flow makes use of the concept of human

32

5.3 JBoss Drools

tasks. It is possible to define rules, which assign actors to concrete human task(s) in a
process. Modelled processes can be added to a knowledge package (just as rules).
Another feature of Flow is the possibility to monitor and log processes and use that

information to detect anomalies or create reports about users’ activities. The reporting
implementation is based on Eclipse BIRT1 plugin. It allows the creation of reports, the
insertion of charts, report exports on web pages and defining specific data sets of interest.
Last but not least, Drools Flow can execute processes defined using the BPMN2 2.0
XML format the same way as it executes processes using the custom RuleFlow format.

5.3.5 Drools Guvnor

Guvnor is a stand-alone web-based GUI, with editors and tools for rule management.
It has its own centralized repository, where rules, models, processes and other assets
are stored. Furthermore, Guvnor offers versioning of all assets in the repository and
therefore the conduction of a complete history on them. The Drools Guvnor subproject
provides a guided editor for domain experts with no technical background. They are
offered an understandable centralized application for elaborating and modifying logic in
the form of rule and process definitions (in the context of the domain they are familiar
with) through a graphical interface. Additionally, a proper access control is granted
for the users who participate in the logic modeling, with respect to the scope they are
allowed to interfere with.
In Guvnor categories can be defined for grouping artifacts. Categorizing assets

contributes to a better navigation among them and supports the search. Furthermore,
categories can be used to control visibility in order to restrict access or just hide features
for certain users. Snapshots of knowledge packages can also be created. They are copies
of the entire package.

Guvnor provides building and deployment of rule packages from multiple assets. The
binary packages (*.pkg) are available via URLs or files and hence are made accessible
for other applications, which need them for their Knowledge Bases.

1 Business Intelligence Reporting Tool (BIRT)
2 Business Process Modeling Notation (BPMN)

33

5 Rule Engines and JBoss Drools

Figure 5.2: Drools Guvnor: Architecture (Source: [Dro10])

Figure 5.2 outlines the main components of Guvnor. It is deployed as a war-file, which
provides the user interface over the web. Drools is Ajax1-based and constructed with the
GWT2 widget toolkit. It uses Apache Jackrabbit, an implementation of the Java Content
Repository (JCR)3, for the data storage management. This part is highly configurable,
as one can use any persistence solution under the content repository implementation - a
file system, a database, a WebDAV repository, etc. The versions of assets are stored in
the content repository as well, along with the rules, models and processes definitions; so
are the snapshots. JBoss Seam is used as the component framework.

1 Asynchronous JavaScript and XML (Ajax)
2 Google Web Toolkit (GWT)
3 The standard of Java Content Repository is defined in the JSR-170 and JSR-283

34

5.4 Conclusion

5.4 Conclusion

In this chapter the background and the mechanisms (functional principles) of rule engines
were discussed. Rule engines offer a way to externalize application logic and hence help a
system scale better in regard to often changing requirements. The principle of inserting
knowledge to systems and letting them make decisions and conduct (re)actions with the
help of predefined patterns has the advantage of merging many software solutions for
similar behavior into one system.
In addition, the JBoss product Drools was examined and the main features of its

modules were outlined. From many other existing implementations of a rule engine, the
Drools platform was chosen for the prototype of this thesis. The choice was initially
motivated by the presence of a Knowledge Agent in Drools, whose concept allows the
dynamical load of new rules or the extension of rules. The availability of a monitoring
module as the Event Listeners was also regarded. Due to the distributed nature of the
α-Flow, concepts like Drools Pipeline were deliberately sought for the propagation of
artifacts and rules. Moreover, the Drools platform is an open-source product, which
has reached a level of sustainability and maturity, and has conceived a wide palette of
complex features.

35

6 Proposed Solution: α-Properties

This chapter focuses on the α-Properties architecture. More specifically the interaction of
the α-Properties with the α-Editor and the α-VerVarStore is regarded. The momentary
realization of the communication, as a simplified solution for some of the α-Overlay-
Network tasks temporarily assigned to the α-Properties, is also exposed.

6.1 Architecture Overview

The α-Properties, the α-Editor and the α-VerVarStore are three modules of the α-Flow
that always reside within the peer. As already explained each α-Doc has its own Editor
and Properties module, staying in close relationship to each other and to the VerVarStore
respectively. The system design for their interaction is outlined in figure 6.1. Here it is
graphically described how these modules are connected as well as what are the concrete
components of the α-Properties module in particular. As concluded in previous chapters
the JBoss Drools platform is used to realize the rule-based part of the α-Properties. As
a result many Drools components are integrated in the system design.
Two interfaces delegate the data flow between the α-Properties and the Editor and

between the α-Properties and the VerVarStore. The Editor is responsible for the
initialization of the active-properties module. Upon opening of an α-Doc via the Editor,
the active-properties component is started. The Editor provides the α-Properties with
the current artifacts of the α-Doc before beginning to work with them. The state of the
Working Memory, where these artifacts are imported into, is set up every time anew and
is kept alive only for the time the Editor is opened (using a stateful Session). When the
Editor is closed, the session is disposed and the Working Memory deallocated.

37

6 Proposed Solution: α-Properties

α-Editor

AlphaPropsFacade

α-Properties

Knowledge

Base

Session

Working

Memory

Working

Memory

Entry

Point

Domain object (fact)

Domain object (fact)

Domain object (fact)

K
n

o
w

le
d

g
e

 A
g

e
n

t

.drl

.dsl

.pkg

R
e

s
o

u
rc

e
F

a
c
to

ry

Agenda

Drools Pipeline

Network

UpdateServiceSenderUpdateServiceReceiver

α
-V
e
rV
a
rS
to
re

V
e

rV
a

rS
to

re

Working

Memory

EventListener

Figure 6.1: The α-Properties Architecture

6.2 The α-Properties Interface

The AlphaPropsFacade interface delegates between the two components (α-Editor and
α-Properties) and offers an implementation-independent abstraction for α-Properties
module. The interface provides methods which enable the Editor to access the objects

38

6.3 The α-VerVarStore Interface

in the Working Memory. Through this interface the Drools instance is started and
configured and eventually gets shut down. Additionally, the current model is loaded,
inserted in the Working Memory and ready to work with. Here the Editor’s Observers
are added and the same instance of the α-VerVarStore component used from the Editor
to persist the data is passed to the α-Properties.
Users open the α-Document and edit its content α-Cards, sending for every changed

adornment or creation of a new content α-Card a request event to this interface. As
a result, the rule engine within the active-properties reasons over the incoming event,
triggers some rules and effects changes. Eventually the Editor gets notified about the
occurred changes and it refreshes its view to the current state of the α-Document.
Furthermore, changes of the payload of the coordination cards can be invoked through it.
For example, a relationship between two α-Cards can be defined or a new participant can
be dynamically added to the set of actors. The new participant gets hence immediately
involved in the workflow. The configuration of the listening port for the application is
conceived to ensue also dynamically. An initial port is set upon starting the α-Properties,
but it is possible to change it at run-time by updating the participant with a new port.
This standardized interface represents a facade for the α-Properties component upon the
Editor module.

6.3 The α-VerVarStore Interface

The VerVarStore regulates the storage and loading of the payloads of α-Cards. It can
store payload to a specific version or variant of the α-Card or load the payload to a
specific version or variant. It thus realizes versioning of the payloads. The VerVarStore
implements versioning (and ideally variants) management in a rudimentary way for now.
On hard-coded directory basis all versions build up a hierarchy within the home directory
of the application; they are saved under a new folder, named after the number of the
new version. The same applies for the payloads of both the coordination and the content
cards. The structure of the α-Doc is also persisted there, as a XML-file.
The TSA-Payload and CRA-Payload are treated in a special way, because they are

shared between all participants involved in the α-Episode. In general each participant
works with a replica of these payloads, which perpetually requires their synchronization.

39

6 Proposed Solution: α-Properties

Each time a participant, a relationship or a content card are added, the payload of the
respective coordination card changes and its version is incremented. As long as the
content card is not under version control, that is is the card is not visible and invalid,
the payload is saved under one and the same initial folder and it gets overwritten every
time the payload changes.

Both the Editor and the α-Properties operate on the same instance of the VerVarStore.
Permanent writing is triggered through the Editor, which flushes the artifacts and their
payloads at run-time. At the same time it caches the artifacts in order to grant faster
access during uptime. The serialization of the α-Doc in a XML-file is not done until
application termination. The α-Properties module on the other hand addresses the
VerVarStore, if triggering a rule affects the payload of an α-Card: then these changes
must be stored.

6.4 The Update Service Interfaces

In order to propagate changes from one Drools instance to the α-Properties compo-
nent of all the concerned parties, the changes should be transferred through the net-
work. There are two interfaces that realize the distribution: UpdateServiceSender and
UpdateServiceReceiver. Each application has one fixed listening port for incoming
event streams. This port is used to broadcast the events and via this port it is amenable
in case another application wants to send events to it. The current prototype implements
it the following way: the application fetches the ports and hostnames of all participants
from the CRA-Payload on demand. In the future work a special module, the α-Overlay-
Network, would arrange for the CRA-Payload of every α-Document the needed network
information and support the data transfer.

6.5 Conclusion

In quest of a solution for an autonomous rule-based subsystem in the context of active
documents, the α-Properties module was developed. It is a part of the α-Flow concept
and is responsible for the manipulation of the active documents and the coordination
of their distributed replicas in a decentralized environment. The α-Properties module

40

6.5 Conclusion

cooperates directly with the α-Editor and the α-VerVarStore. Their interaction was
expounded in this chapter. The self-reliance of the α-Properties is ensured through
a rule engine, deployed to handle events and actions on its own. In the implemented
prototype some functions of the α-Overlay-Network were shifted to the α-Properties.
Nevertheless the vision is to factor them out in the α-Overlay-Network component, once
its boundaries and its concrete role in the flow are more specifically determined.

41

7 System Design: α-Properties

In this chapter the system design of the proposed solution is amplified. The prototype of
the proposed solution was implemented in a way to fulfill the functional requirements
from section 4.3, 4.4 and 4.5.
An Event Model was considered for the events. They were categorized and grouped

according to the functional application-specific requirements. Additionally, the corre-
sponding actions to these events were defined in the form of rules, which were also
classified semantically. Models for the α-Adornment-Descriptor, the α-Doc, the α-Cards
and the structure of their payloads were designed as well.

For the realization of monitors for the changes, the Drools Working Memory Listeners
are applied. Additionally, a Drools incoming pipeline is used for the implementation of
the distribution of updates.
Few initial assumptions and limitations were made for the system design in order to

grant prototype simplicity and prove a point. These assumptions include an "always-on"
semantics for the connectivity of the peers in the network and the proposal of an initial
rule package, which reflects simple application scenario measures. Besides, security and
synchronization issues are momentarily left out. Nevertheless, the basic functionalities of
an active-properties component are provided.

7.1 The α-Model

The designed domain models for the α-Adornment-Descriptor, the Payload of the α-Cards
and the α-Doc are displayed in figures 7.1 and 7.2. The member fields of the AlphaCard

class represent the adornments, defined for the α-Adornment-Descriptor. The AlphaDoc

class declares the structure of the α-Doc. It consists of a unique episodeID, has a
descriptive title and a list of all α-Cards.

43

7 System Design: α-Properties

Figure 7.1: The α-Doc and α-Card Models

Figure 7.2: The Payload Model

44

7.2 The α-PropsFacade Interface

As the payloads of the coordination α-Cards have a special structure, their models are
declared separately, derived from the super class Payload. The payload of the content
cards is so far stored in a binary form (as its format might be Microsoft Word, PDF1,
HL72, CDA3 or the like) and it does not have any special features.

7.2 The α-PropsFacade Interface

Figure 7.3 displays the methods the AlphaPropsFacade interface offers to the α-Editor
module. The methods reflect the functional requirements for this API, which were
elaborated in detail in section 4.4, and the functionality proposed in section 6.2. The

Figure 7.3: The AlphaPropsFacade Interface

interface provides the facility to initialize the α-Properties module, as it is only started
when the Editor is opened. Further, it provides methods for invoking data manipulation

1 Portable Document Format (PDF)
2 Health Level 7, http://www.hl7.org
3 Clinical Document Architecture

45

7 System Design: α-Properties

requests like changing an adornment value of an α-Card or adding of a new participant
to the workflow and the like. The names of the methods are partly self-explanatory.

α-Editor AlphaPropsFacade ReceiverSenderSessionKnowledge BaseKnowledge Agent
Dr. Bob

set VerVarStore

initializeConfig

install Knowledge Agent

build Knowledge Base

create Session

register WMEventListener

register WMEventListener

create Marshaller

initialize Sender

instantiate Receiver

set up pipeline

set port

set ResultHandler

set global

initializeModel

insert AlphaDoc

insert VerVarStore

insert AlphaCard

insert TSAPayload

insert CRAPayload

fire all rules

open

foreach

Figure 7.4: The Initialization Methods

Figure 7.4 shows a detailed view of what steps are taken when the Editor is opened, in
regard to the α-Properties module. Invoking the initializeConfig() method means

46

7.2 The α-PropsFacade Interface

the following. Within its call a Knowledge Agent is installed. A Knowledge Agent is
considered, because it observes resources consistently and pulls changed resources on
interval basis, thus enabling a dynamic rebuild of the Knowledge Base at run-time. Next
step in the α-Properties initialization is the inital building of the Knowledge Base, where-
upon a Stateful Session is created. Consequently, two WorkingMemoryEventListeners

are registered for the session (more in section 7.6 below). The next two steps con-
cern the initialization of the UpdateServiceSender and UpdateServiceReceiver. If
globals (Drools) are used in the rule package, they should be set also now. As the
UpdateServiceSender is considered to be imported as a global for the implementation
of the α-Properties, this global is set next (see 8.1.2).

The second method, which the Editor invokes, is the initialization of the model. This
method supplies the Session with the working artifacts (FactHandles). The α-Doc, the
payloads of the coordination cards, all existing α-Cards so far and an instance of the
VerVarStore are therefore inserted into the Working Memory (for the Session). When
the user closes the Editor, it calls the shutdown() method of the AlphaPropsFacade

where the Session is disposed, which eventually terminates the application.
The methods getAlphaDoc() and getAlphaCard() offer the facility to gain informa-

tion about the current state of the artifacts in the Working Memory to the user. In fact,
some queries are pre-defined for the main artifacts and they are invoked when the user
makes such inquiries. The queries are amplified in the next chapter (see 8.1.1).

The Obeservers of the α-Editor register themselves through the interface by the Stateful
Session in the α-Properties. There are so far two Observers: one regards any kind of
events that happen to or about α-Cards and the other one is interested in changes or
events that concern the adornments or the payload of the cards. If these Observers get
notified of an event, the Editor responds by updating its insight of the artifacts through
the refreshAlphaDoc() method.

A figurative example of the collaboration between the α-Properties, α-Editor and the
α-VerVarStore in the process is given in figure 7.5. It describes the sequential method
calls for two scenarios: changing a payload of an α-Card (above) and changing an
adornment of an α-Card (below). As already explained, the user requests are propagated
to the α-Properties, where rules are matched and actions like changing artifacts, storing
a payload or forwarding of the change requests to other participants take place. Final
persistence of the artifacts is realized at the end.

47

7 System Design: α-Properties

Node X Node Y

α-Editor

Dr. Bob

α-Props α-VerVarStore α-Props α-VerVarStore α-Editor

1. open

START

2. change paylod

3. send request

4. persist change

5. propagate change

8. notify

6. persist change

7. notify

9. change adornment

10. send request

11. propagate change

12. notify

13. notify

END

14. close

15. persist artifacts

CASE

Figure 7.5: The Collaboration between the α-Properties, the α-Editor and the α-
VerVarStore

7.3 The Events Classification

The term event is beheld two-fold here. There are the application-specific events,
initialized by the user, and the technical events, which are created internally. In fact,
the user events are transformed into technical events. The rule-based system in the core
of the α-Properties expects these technical events, in the form of facts. Their insertion
in the Working Memory activates rules from the Knowledge Base. The activated rules
are then scheduled on the Agenda to fire and get eventually executed.

48

7.3 The Events Classification

The events can be also classified according to how they are inserted into the Working
Memory. The most of the events come from the outside, that is either from the user or
through the pipeline; but there are some of them which are inserted internally into the
Working Memory as a part of the action of a triggered rule.

7.3.1 Application-specific Events

The Editor sends requests to the α-Properties through the α-Properties interface. These
requests represent events. The events define a finite group of requests, such as adding a
content card, requesting an adornment change, setting a payload, appointing a relation-
ship between two cards, adding or altering a participant or getting the current state of
the α-Doc. The application-specific events reflect the functional requirements appointed
for the user interface (see section 4.4).

7.3.2 Technical Events

The technical events are mapped according to the application-specific events and are
created internally. They represent facts, that can be inserted into the Working Memory.
They are simple POJOs, that are created from the application-specific events. These
new objects are inserted into Working Memory. Their goal is to address exactly the rules
that should fire. These POJOs have as member variables the information needed in
order to trigger a certain rule. So upon insertion, this information addresses a rule, the
rule is fired and, as the artificial fact is not needed any more after that, it is eventually
retracted from the Working Memory. This last part happens as a step of the action
part of the rule. It is important that no technical facts remain in the Working Memory
without serving their purpose of triggering rules, and without eventually being deleted
within them. These facts should not stay in the Working Memory, because they are not
actually part of the application artifacts set. The reason the concept of technical events
is applied is to make manipulations on the artifacts set possible in the first place.
It was considered that the user requests can be divided in exactly four types: 1) add

a new α-Card; 2) change an adornment of an α-Card; 3) change payload in general
(this involves adding or updating a participant (CRA-Payload), adding a relationship
(TSA-Payload) or setting payload to an existing content card); and 4) check changeability
of the adornments of an α-Card. This last request is sent before an actual adornment

49

7 System Design: α-Properties

change request is initiated, in order to check if this change is allowed. Figure 7.6 shows the
class diagrams of the four technical events designed for the system: AddAlphaCardEvent,
ChangeAdornmentEvent, ChangePayloadEvent and CheckChangabilityEvent.

Figure 7.6: The Event Model

50

7.4 The Groups of Rules

Table 7.1: The Technical Events
event name description
AddAlphaCardEvent add a new content α-Card
CheckChangeabilityEvent check adornments changeability, depending if ∃ payload
ChangeAdornmentEvent change an adornment request
ChangePayloadEvent chnage a payload request

The technical events generated internally correspond to the user triggered events. There
are four types of events that can occur and which the subsystem expects. There is a special
event, when the α-Doc is extended with a content card - the AddAlphaCardEvent. Before
an adornment change takes place, a CheckChangeabilityEvent is triggered, in order to
check which adornment can be changed at all. Subsequently a ChangeAdornmentEvent

follows, regarding a certain adornment. If the payload of a coordination card should be
altered or if a content card gets new payload, the ChangePayloadEvent handles these
requests. In table 7.1 the four types of events are listed. Beyond these events only the
initial insertion of artifacts conduce to adding more objects to the set of work items,
involved in the active interaction.

7.4 The Groups of Rules

Twenty-four different rules were designed in order to fulfill the application requirements
for the α-Properties behavior. They are distinguished semantically in four groups (see
table 7.2): adding a content card, checking changeability of adornments for an α-Card,
change an adornment and change a payload. The groups reflect the use-case paradigm of
the application: peers should be able to create new artifacts and change their adornments
and payload. The rules are grouped the same way the user requests are (cf. the technical
events classification).

Table 7.2: The α-Props Groups of Rules
rule group name
Add an α-Card Rules
Check Changeability Rules
Change Adornment Rules
Change Payload Rules

51

7 System Design: α-Properties

If within the RHS1 of a rule another rule should be triggered, then a technical event
is created inside it. This technical event is conceived to cause the effect of triggering
the other rule. This workaround is considered because up to the Drools version 5.0.1,
nested rules are not allowed. This solution was used twice: to trigger the update of the
TSA-Payload upon inserting of a new content card within the corresponding rule and to
launch the propagation of the payload of a content card (if it has any) upon making it
visible (public).

7.4.1 Adding a New Content α-Card

The initial α-Doc has implicitly only the two coordination cards. Throughout the evolve
of the α-Episode many content cards are likely to be added. A new content card can be
explicitly generated or be proposed for creation on dragging and dropping of a passive
document on an already existing α-Doc. Without a payload, a content card exists but it
is appointed as a "place-holder". Actually, the place-holder has just an α-Adornment-
Descriptor, without payload. The purpose and meaning of a content card is to bear
useful payload in the form of medical paperwork. Hence the place-holders exist pro
forma, but are actually of no interest to the concerned parties until they get a payload.
Table 7.3 shows what are the default values of a place-holder. If not otherwise set by the
user, the place-holder is created with the default values. However, the specification of
initial values is mandatory.
Figure 7.7 describes what happens if a new content α-Card is added to the α-Doc.

As the graphics shows the user request to add a new content card is mapped to the
technical event AddAlphaCardEvent. This event is inserted into the Stateful Session and
it triggers the rule, which handles the actual addition of the card. This rule does the
following: it inserts the new content α-Card in the Working Memory, inserts a change
payload event, that has the assignment to add the new content card to the TSA-Payload
and at last invokes the sendAlphaCard() function, which triggers the sending of the
new place-holder to the other peers. After the RHS of the rule is executed, the Agenda
fires a collateral rule activated by the change payload event created for the TSA-Payload.
Within this rule, the version of the TSA coordination card is incremented.

1 Right Hand Side; the action (then-)part of a rule

52

7.4 The Groups of Rules

However, upon the creating of a new α-Card (regardless whether it is a place-holder
or not), a copy of it is directly forwarded to all other participants. As long as it stays
private, only its owner or the subject it was assigned to can change it or attach payload

Node YNode X

α-Editor

Dr. Bob

α-Props α-VerVarStore α-Props α-VerVarStore α-Editor

add AlphaCard

insert AddAlphaCardEvent

notify (insert AC)

notify (insert CPE)

notify (retract AC)

notify (update TSA)

insert AlphaCard into WM

insert ChangePayloadEvent

change version (TSA)

notify (retract CPE)

send AlphaCard

propagate ChangePayloadEvent

change version (TSA)

put TSA-Payload

notify (retract CPE)

notify (update TSA)

notify (insert CPE)

notify (insert AC)
insert AlphaCard into WM

put TSA-Payload

insert ChangePayloadEvent

notify

put payload (AlphaCard)

put payload

retract ChangePayloadEvent

insert ChangePayloadEvent

change version AC

retract ChangePayloadEvent

notify (update AC)

notify (retract CPE)

retract ChangePayloadEvent

Figure 7.7: The Addition of an α-Card

53

7 System Design: α-Properties

Table 7.3: The Adornments: Default Values
adornment default value
id [automatically set]
alphaCardName ""
object [the patient]
subject [the owner]
visibility private
validity invalid
version 0
variant ""
fundamentalSemanticType content card
semanticType(≡AlphaCardType) ""
syntacticPayloadType ""
versioning false
dueDate ""
deferred false
deleted false
priority normal

to it. All these changes would stay local and they will not be sent to the other peers,
as long as the visibility of the card is private. So the other participants can see up to
that point only the place-holder. As soon as a content card goes public, a copy of the
new version is broadcasted to all and it overwrites the initial place-holder. Actually, the
old α-Card gets retracted from the Working Memory, as soon as its new version gets
inserted. There is one extra rule for the case when the public content card arrives. Its
action is the retraction of the place-holder.
In case (such as the described scenario) the card was created with payload, some

additional steps take place in order to store this payload. The Editor requests the adding
of payload subsequently to the request for the addition of the card. The insertion of
another payload change event (this time for the content card) is therefore triggered,
which fires another rule. Within this rule the payload of the α-Card is stored. More
detailed descriptions of the attendant rules are given in the following subsections. In
figure 7.7, it is assumed that the α-Card is still private, that’s why its payload is only
stored locally and is not propagated to the other participants. It is further assumed,
that the card is still not under version control. If it were, than the incrementing of its

54

7.4 The Groups of Rules

version within the rule, would have triggered the sending of a notification about this
adornment change back to the Editor.

7.4.2 Checking the Changeability of Adornments

Before any adornment of an α-Card can be changed, the Editor checks which adornments
at all can be altered in respect to the current status of the α-Card. There are three rules
that serve this purpose. Depending on the fact whether the content card has already
payload or not or if the card has been marked as deleted, different adornments are allowed
to be altered. These rules are triggered by a CheckChangeabilityEvent. An overview
of the possible values in each of the cases is given in table 7.4. The adornments that
cannot be changed are referred to as false. These adornments are therefore inaccessible
for the user and blocked from being altered.

Table 7.4: The Changeability of the Adornments
adornment no payload ∃ payload deleted
id false false false
alphaCardName true true false
object false false false
subject true false false
visibility false true/false false
validity false true/false false
version false true false
variant false true false
fundamentalSemanticType false false false
semanticType(≡AlphaCardType) true false false
syntacticPayloadType true true false
versioning false true/false false
dueDate true true false
deferred true true false
deleted true true true
priority true true false

The adornments, which have both true and false put in the possible values, can be only
altered if the corresponding adornment has not already been set, so their initial value
would be true. If is has been set once, than it cannot be changed any more afterwards
and therefore their value is false henceforth.

55

7 System Design: α-Properties

7.4.3 Changing an Adornment

The adornment model describes the properties of an α-Card. There are many reasons
why these properties are not static. For one thing, it is anticipated that events, occurred
in the workflow, are going to affect its artifacts, and respectively their adornments. There
are certain actions, important for the application, that are especially designed to be
triggered through these changes. Besides, it is a functional requirement that it should
be possible for the user to change the adornments of an α-Card and thus be able to
manipulate the workflow.
When the set of adornments, that can be changed, is settled (after checking the

changeability of the adornments), the Editor shows it to the user. Some adornments
can only be set once and never be changed again. Others can be altered only after
the content card they belong to has payload. There are adornments, that can be set
many times, regardless of the content card being payloadless or not. Change adornment
requests get into the Working Memory via the α-Properties interface.

If a change request is invoked, a ChangeAdornmentEvent is inserted into the Working
Memory, which triggers according to the adornment type the change was requested for,
the corresponding rule. Its action is on the one hand the altering of the adornment of
the α-Card and on the other hand, in case the card is already public, the propagating
of the same ChangeAdornmentEvent object to the other peers. If the request is to set
the visibility of the card to public, then this request is broadcasted directly. There is
one special issue though about the rules for visibility, validity and versioning. It shall
be deemed that once a card is made public or valid, it stays public or valid henceforth -
the value of this adornments cannot be reversed from then on. And if version control is
started (set versioning to true), it is also irreversible.

Within the rules concerned with adornment change requests, versioning of the cards is
executed. Version control is activated in two ways. One option is, that the user triggers
the versioning explicitly. This can be done at any time, whilst it is still not the case.
The second option takes place implicitly. If versioning is not already started by the user,
it is enforced at the latest, when the card becomes valid in addition to being public or
vice versa. Either way, once version control is activated, it is irreversible.

If the user wants to trigger versioning for an α-Card, they can do one of the following.
The first option is by giving the α-Card a specific initial version value, the α-Properties

56

7.4 The Groups of Rules

ignores the forwarded value, sets the version of the card to "1.0" and activates versioning.
The second possibility is by setting versioning to true, whereby versioning gets activated
but no version number gets incremented. Once versioning is enabled, it is regulated
internally. Each time the version adornment is altered, this request is interpreted as
simple incrementation of its former value.
New versions are generated only if the card is under version control and one of the

following events takes place: a new payload is added or current payload is altered. The
coordination cards are from the beginning on under version control, because they are
valid and public per default due to the fact that they should be fully accessible to all
peers involved in the the α-Episode.

7.4.4 Changing Payload

There is a group of events that goal to alter the payload of an α-Card. Such an event
implies for a coordination card a payload change request, because the payload of the
coordination is designed to be extendable. Adding a new content card can be such a
payload change request, that will affect the payload of the TSA coordination card. Two
content cards may be in a relationship to one another. Defining their relationship is
made explicitly with a special payload change request, which also concerns the payload of
the TSA coordination card. Expanding the CRA-Payload on demand is also possible. If
a new participant is added to the set of actors involved in the workflow or the fields of an
existing one are altered, the payload of the CRA coordination card must be respectively
changed.

In addition, the payload of a content card must be considered. This payload cannot be
actually altered, it can only be replaced with a new variant or version of it. Nevertheless,
adding the new variant or version of the payload of a content card is considered also a
payload change request and therefore counted to this group of events. Once sent these
events match rules of the corresponding group.

The group of rules which handles change payload requests consists of four rules. One
rule handles the event of attaching payload to a content card, one manage the addition
of a relationship, another one - the addition of a new card, and the fourth concerns the
insertion of new participant or the altering of an existing one, if a new port is assigned
to this peer.

57

7 System Design: α-Properties

Adding a Relationship or a Participant or Updating a Participant
By adding a relationship or a participant a ChangePayloadEvent is inserted into the
Working Memory. There is exactly one rule for each one of the requests that can be fired,
depending on the type of payload the ChangePayloadEvent was created for. In either
case the payload of a coordination card gets modified and the same ChangePayloadEvent

object is propagated to all the other peers (if the card is public). At last, as a part of
the action in the RHS of these rules, the VerVarStore data is also updated to the new
version of the payloads.
Adding a Payload to a Content α-Card

When attaching payload to a content card, the user can put some adornment changes
to this request as well. They are chopped up in separate ChangeAdornmentEvents

and consecutively inserted into the Working Memory, inducing the corresponding rules.
Adjoining, the ChangePayloadEvent is inserted. As a result the rule in the Knowledge
Base for setting the payload of a content card is triggered. There are a few things that
take place within the action part of this rule. Namely, the correct version of the α-Card is
incremented (if the versioning adornment of the card is set to true) and the VerVarStore
is made aware of the new payload. If versioning is still not activated at that time, the
new payload is stored in one and the same initial folder and as long as this is the case it
gets every time overwritten by the next incoming payload. Again, if the card is already
public, the ChangePayloadEvent object is forwarded to the other participants.

7.5 Propagating Updates

Summarized the propagation of updates is realized as follows. When an object should
be sent out, in the triggered rule a function is invoked, that builds a set of the current
peers and sends to each one of them an update-event by invoking the sendUpdate()

method from the UpdateServiceSender. On the receiving side a Drools Pipeline is set
up, which accepts these events and inserts them directly into the Working Memory. The
pipeline is described in more detail in section 8.2. Figure 7.8 outlines the basic steps of
the data transfer.
The UpdateServiceSender and the UpdateServiceReceiver interfaces are shown

in figure 7.9. The Sender interface provides so far the facility to send only objects of

58

7.5 Propagating Updates

α-Properties@NodeX α-Properties@NodeY α-Editor@NodeY

Rule Engine Sender Reciever Rule Engine

marshallsend object

propagate

insert into WM

notify (insert obj)

Editor

unmarshall

Figure 7.8: The Update Propagation Interaction

Figure 7.9: The Update Service Interfaces

the type AlphaCard, ChangeAdornmentEvent or ChangePayloadEvent as other types of
objects are not conceived to be propagated. The instance of the Sender is imported in
the Stateful Session as a global in order to provide this service within the action part
of rules. The Receiver on the other hand is instantiated in the initializeConfig()

method of the AlphaPropsFacade and its instance is designed to be running as long as
the application is running, thus providing in background the facility to accept continual
incoming events.

59

7 System Design: α-Properties

7.6 Notification

In order to inform the Editor of occurred changes in the state of the objects in the
Working Memory, the concept of WorkingMemoryEventListeners was applied.

Figure 7.10: The Event Listeners

There are two kind of events that interest the Editor. For one thing, changes in
the adornments and the payloads, and for another when in particular an α-Card is
altered or created. Therefore two Listeners were developed. The Working Memory event
listeners monitor the Working Memory and trace what happens in it. All facts that get
inserted, updated or retracted are observed, thus satisfying the need of Observables

(also known as Subjects from the Observer Pattern [GHJV95, HK02]) that communicate

60

7.7 Conclusion

with the Editor and inform it about new states of the objects in the Working Memory.
The Observer pattern is retrieved in the concept of the Editor being registered by the
WorkingMemoryEventListeners as the Observer.

There are two implementations of the WorkingMemoryEventListener interface:
UIAlphaCardNotifierEventListener and UIChangeEventNotifierEventListener

(figure 7.10). The two of them send notifications to the Editor. The implementations
extend the Observable class. The Editor implements two Observers as well: one that
gets notified when an α-Card is added or altered; and one that gets notifications of
events that go with adornment change or payload change requests.

7.7 Conclusion

In this chapter the system design of the prototype, implemented for the proposed solution,
was explained in detail. A general view of the interaction between the active-properties
and the α-Editor was given. The tasks of the α-VerVarStore component and its place
in the α-Flow were briefly discussed as well. Furthermore, the system design of the
α-Properties module was outlined. Moreover, the system-specific realization of the
requirements with the help of rules, Drools pipeline and the use of the Observer Pattern
design was demonstrated as well. In the following chapter some particular implementation
issues will be revealed in more details.

61

8 Implementation Issues

In the following some implementation issues of the rules, used in the prototype, and some
further technical issues from the α-Properties module will be described. The system
design and its implementation present the first prototype for the proposed solution and
as such there are some delimitations and open issues. They are amplified in chapter 9.

8.1 The Rule Package

A rule package contains rule definitions, function declarations, queries just to name a few.
They are written in DRL and compacted into one *.drl file. The rule package conceived
for the prototype makes use of this encapsulation of logic. In this package all rules were
defined as well as some useful functions for the propagation and some specific queries.
The whole rule package has been listed in the appendix A. This package can be taken
into account as the basis for future extensions.

8.1.1 Queries

Drools allows to create queries, which inquire the Working Memory state. Three general
queries were defined in the alpha.props.rules rule package. They are especially useful
for the α-Editor. Every time it refreshes its view it uses two of them: alphaDoc and
alphaCards (see table 8.1). With the returned hits, the Editor acquires the current
snapshot of the artifacts and shows them to the user. The third query was created in
order to make it possible to retrieve an α-Card by its identifier.
By applying queries it is ensured that only the current state of the objects will be

returned. They should be considered as standalone LHS1 (as of rules), where the engine

1 Left Hand Side; the condition (if -)part of a rule

63

8 Implementation Issues

Table 8.1: The α-Queries
query name description
alphaDoc gets the current state of the α-Doc
alphaCards gets all currently available factHandles from type α-Card
alphaCardByID gets the current α-Card object that corresponds to this ID

only tries to find a match to the specific conditions and then returns the hits without
doing anything else. Queries however provide just one way to implement the facility of
gaining information about the artifacts in the Working Memory. One can just as well
provide a customer solution.

8.1.2 Globals

In Drools there is the possibility to pass an object to the Working Memory without extra
inserting it. For example in order to make a service from the application available to
the rule engine and hence be used in the RHS of a rule. As it is conceived that the
synchronization of the artifacts and their distribution take place in the action part of
the rules, the UpdateServiceSender is set in the rule package as a global. This way
making it on-hand available to be used in order to send out the artifacts.

8.1.3 Functions

The propagating of adornment or payload changes is an action, which takes place for
every adornment and for the payload of both coordination cards and the content cards,
as long as the card is public. This particular action is therefore invoked over and over
again only with different parameters for each rule. For such cases using functions, which
keep the logic at one place is preferable. Moreover, if this logic is likely to be changed,
this must be done only once - in the function declaration.

Table 8.2: The Functions
function name description
getNodeIDs gets the network information for all participants
sendAlphaCard sends out the new α-Card object
propagateAdornmentChange sends out a change adornment request for an α-Card
propagatePayloadChange sends out a change payload request for an α-Card

64

8.1 The Rule Package

On overview of the functions in the rule package can be taken from table 8.2. The
first function helps obtaining the network information of the participants, to whom the
events should be broadcasted. The second listed function helps to send out a content
card - that is a place-holder or a content card, that has just been made visible (public).
The last two are responsible for the propagation of adornment change requests and the
propagation of altered or new payload respectively.

The functions are all placed within the RHS of the rules, where the actions take place.
So, in case the card is public and a change request occurs the corresponding functions
will be invoked. The same takes effect, if an α-Card is supposed to be distributed.

8.1.4 Rules

All twenty-four rules, named as they are defined in the rule package, are listed in table
8.3. They are distinguished semantically in four groups (see table 7.2 and in table 8.3
outlined in bold). But technically (that is with regard to Drools-Groups) they are
divided into only two groups with different scope. Most of the rules are in the scope of
the default Agenda Group: main. Only three of the rules belong to an Activation Group
called "check changeability". These rules form an Activation Group, because only
one of them can be activated at a time.

The application is designed in a way that not more than one rule can be scheduled to
fire per incoming fact. And because there is technically no possibility that two or more
rules can be triggered based on the same facts, there is no need of priorities for the rules
(there is no salience defined), meaning that the activated rules get fired on the LIFO
(last in, first out) principle. Without salience the Agenda is not able to warrant a fix
order of execution. If the application expects that and it is not granted, unforeseeable
effects may occur.

There is one special rule though, that has high priority - "once valid and public, start
versioning". If the conditions for this rule get fulfilled, the rule is activated and scheduled
for immediate execution. This rule is also in the main group. Thus ensuring regardless
of which group the focus was last set on, it would always be activated and scheduled on
the Agenda for execution.
The following example is based on the prototype implementation which was realized

with JBoss Drools, therefore the example is illustrated in the DRL/dialect java. It

65

8 Implementation Issues

Table 8.3: The α-Props Rules
rule name salience group
Add an α-Card Rules: -
"Add a place-holder content α-Card" - main
"Add a content α-Card (PUBLIC)" - main
Check Changeability Rules: -
"Check Changeabilty: card does not have payload" - check changeability
"Check Changeabilty: card has payload" - check changeability
"Check Changeabilty: card is marked as deleted" - check changeability
Change Adornment Rules: -
"Set visibility" - main
"Set validity" - main
"Once valid and public, start versioning" 50 main
"Set version" - main
"Set variant" - main
"Set versioning" - main
"Set alphaCard type" - main
"Set alphaCard name" - main
"Set dueDate" - main
"Set priority" - main
"Set deleted" - main
"Set deferred" - main
"Set subject (owner of the alphaCard)" - main
"Set object (patient)" - main
"Set syntactic payload type" - main
Change Payload Rules: -
"Add a new content alphaCard to the ToDoItems" - main
"Add a relationship" - main
"Add or update a participant" - main
"Add payload to a content alphaCard" - main

illustrates a rule that is activated if a request to set a new subject (owner of the card)
is inserted in the Working Memory. It triggers therefore this change, and propagates
the request to the other participants, if the parameter propagateChange is true. This
parameter is set internally to true, if the visibility of the card is evaluated to public. The
rest of the rules are listed in the appendix A.

66

8.2 Distribution

1 rule "Set subject (owner of the alphaCard)"

2 no-loop true

3 when

4 craPayload : CRAPayload ()

5 cae : ChangeAdornmentEvent(

6 acid : alphaCardID ,

7 at : adornmentType ,

8 nv : newValue ,

9 pc : propagateChange)

10 ac : AlphaCard(id == acid)

11 eval(at.equals(AdornmentType.SUBJECT))

12 then

13 modify(ac) { setSubject ((SubjectID)nv) };

14

15 if(pc == true) {

16 propagateAdornmentChange(cae , craPayload ,

updateServiceSender);

17 }

18 retract(cae);

19 end

Listing 8.1: Rule that changes an adornment: sets the subject of an α-Card

8.2 Distribution

The UpdateServiceSender interface applies a very primitive use of sockets. For every
sendUpdate() method call triggered within a rule action, a new socket connection is
set (one per recipient). The event is then transformed into XML-bound object and
thus prepared for serialization. Eventually, this object is sent out onto the socket.
Afterwards the connection is closed. In the implementation of this prototype, the events
are broadcasted to all peers involved in the α-Episode. The XML binding is accomplished
with a customized JAXB Marshaller, which recognizes in its context the object models
of the artifacts.
On the receiving side, UpdateServiceReceiver interface eavesdrops perpetually for

incoming connections. In case there is a request, a new socket is set, the connection

67

8 Implementation Issues

is accepted and forwarded to it by the ServerSocker. The incoming payload is than
directly inserted into an incoming pipeline, that was set up upon the initializing of
the α-Properties. There is always one incoming pipeline per stateful session, ready to
receive XML-bound events from the listening socket. Once these objects are inserted
into the pipeline, they undergo several stages, get transformed into FactHandles and are
eventually fed directly into the Working Memory. Once in the Working Memory of a
new Drools instance, these events trigger the firing of the same rules, so the changes take
place as they have in the ego-peer. The effects of the updates can be seen on the Editor,
as soon as it refreshes its view upon notification from the observed Subjects (see section
7.6).

The term ego-peer should be defined briefly here - an ego-peer is the participant
from whom changes come. Ego-peer is every peer, which represents a participant who
initializes changes that affect the flow. These changes get eventually propagated to all
the other peers. This is more a role, assigned to those peers which happen to be active
at a certain moment, rather than a feature.

Working

Memory

Unwrap

Object

Stage

JAXB

Transformation

Stage

Insert

Stage

Figure 8.1: The Incoming Pipeline

A pipeline undergoes many stages, the types of which depend on the application
needs (figure 8.1). A pipeline is built from the bottom up. On the top of the pipeline
an ExecuteResultHandler Action is set, which converts the incoming objects into
FactHandles and hence makes them available to the rule engine. It serves as the
Receiver for the former stage - the Insert Stage, where objects are inserted into the
Working Memory (or here the StatefulKnowledgeSession). The Insert Stage is the
Receiver of the next stage - the Transformer Stage. Here the transformer instance and

68

8.3 Monitoring

the transformer stage is created, where XML-bound objects are transformed into POJOs.
The transformer is realized with use of an JAXB Unmarshaller, implemented from Drools
and offered as one of the few predefined Transformers designed for embedding in the
Pipeline. And lastly, the Transformer stage sets the Receiver for the entrance stage
where the start adapter Pipeline for the StatefulKnowledgeSession is created. In this
stage the socket payload is inserted.

8.3 Monitoring

In order to distinguish for what changes a notification should be sent, the objects of
interest are accordingly annotated. Listing 8.2 shows the simple annotation declared for
this purpose. The @Retention(RetentionPolicy.RUNTIME) indicates that annotations
with this type are to be retained by the Virtual Machine so they can be read reflectively
at run-time.

1 import java.lang.annotation.Retention;

2 import java.lang.annotation.RetentionPolicy;

3 /**

4 * Denotes if a class will be sent to any Observer if changed within

an Observable.

5 */

6 @Retention(RetentionPolicy.RUNTIME)

7 public @interface ObservableEvent {

8

9 }

Listing 8.2: Declaration of the ObservableEvent Annotation

The UIAlphaCardNotifierEventListener sends a notification to the Edi-
tor when an α-Card is inserted, retracted or somehow altered. Whereas the
UIChangeEventNotifierEventListener notifies if an object annotated with the
tag @ObservableEvent is added, retracted or updated.

69

8 Implementation Issues

8.4 Conclusion

In this chapter some implementation details of the prototype were provided. An initial
rule package was conceived for the prototype. By and large changes of the adornments
of content cards, a flexible way of extending the payload of coordination cards and
propagation of events in a distributed environment are realized with the designed rules.
Furthermore, version control of the artifacts is internally considered, as is access control
in regard to private content cards, which are not supposed to be accessible or be seen
by non-owner participants unless they are public. Some further issues in regard to the
implementation of the distribution and the monitoring were also discussed.

70

9 Discussion

The following chapter offers a lookout of the future work. Some of the discussed issues
have already been conceived but have not yet been fully implemented. Others are
not conceptually elaborated but are considered open and important aspects for the
architecture. Whereas many of them refer to the α-Flow as a whole, there are some
meeting points with the α-Properties module as well.

9.1 Delimitations in the Model

As already mentioned in chapter 6, there are some generalized assumptions made
for the prototype implementation. They are distinguished mainly in respect of the
communication and in respect of the adornments model.
Concerning the communication, there are three aspects that are considered. First of

all, the always-on semantic of the nodes is elevated. It is assumed that none of the peers
goes offline and they are always reachable and ready to accept incoming connections.
Secondly, so far all participants get informed in case changes occur on an ego-peer.
Therefore the changes are broadcasted to all participants involved in the flow. It should
be possible though that only a subset of selected parties can be targeted according to
whom these changes actually concern. And thirdly, the recipient list extracted from the
CRA-Payload is static for now and it can be only extended, if a participant is added
during the run-time. The objective is that such recipient lists are created dynamically
on demand.
In the prototype the most adornments are designed in a simple way. For example by

a boolean or through an enum. But it is just for the illustrative purposes a prototype
should serve. More complex model presentation should be conceived. So far only a
generalized model is considered, which is immutable. What is needed is the convertion
of the adornments into a dynamically extendable model. Furthermore, with respect to

71

9 Discussion

the adornments, some rules were designed, such as the irreversibility of the visibility,
validity and versioning adornments: once they are changed they cannot be reset to their
initial values. In addition, there is the firm rule controlling the activation of the version
control - namely, it is assured that as soon as a content card becomes both valid and
visible (and it already has payload, of course) versioning is turned on. The set of rules
that is initially proposed in this prototype merely provides a minimum of exemplary
rules, but it sets up a basis for expansion.

9.2 Prototype Optimization Options

9.2.1 Networking

The receiving port is set upon initialization of the α-Properties. It should be possible to
change this port dynamically and repeatedly. So far, in order for any changes to take
place, a restart of the application is needed.

9.2.2 Clearing up the Working Memory

The permanent FactHandles in the Working Memory are not supposed to be technical
events, but objects of the domain model; i.e. the content cards, the coordination cards,
their payload, the α-Doc and the VerVarStore instance. The technical events, described
in section 7.3, are items of short existence and they are not supposed to stay in the
Working Memory for long. Nevertheless, in case a technical event does not fulfill its task
of triggering some rule, it will incorrectly remain in the Working Memory. Measures to
avoid such occurrences must be taken. A work-around could be to query the Working
Memory whether such technical objects reside within it and force the rule engine to
file all rules again. Nonetheless, an explicit exception management should rather be
deliberated, which should classify the use-cases that could cause such situations in the
first place.

9.2.3 Flow Features Elaboration

Flow provides so called pluggable work items, which form the building blocks of a process.
They can be manifold combined and extended by custom, domain-specific ones, designed

72

9.3 Rules Management, Dynamic Load of Rules and Rules Propagation

by domain experts without any technical knowing. Work items are useful for integrating
external services as well. Drools offers default implementations for the following tasks
already ([Dro10]):

• sending email

• finding files

• FTP

• google calendar

• instant messaging

• REST services

• RSS feeds

• creating archives

• executing system commands

• transforming data

Sometimes the collaboration of humans is needed in processes. As already mentioned
Flow makes use of human tasks. A default implementation human task management
based on the WS1-HumanTask is provided ([Dro10]), but must not necessarily be used.
As human tasks are just another pluggable work item, any human task management
solution can be integrated. As these features could be applied to the concept of α-Flow,
they should be elaborated in more detail.

9.3 Rules Management, Dynamic Load of Rules and
Rules Propagation

There are should be a way to provide the user with a tool for composing rules themselves
and deploying them at run-time. For people with no technical background, there should
be the possibility to self-manage the rules within the own node. This includes writing
the rules as well as deciding for which parties these new rules should be of interest.
Different policies could be determined, appointing the classification of rules as universal
or customized.

Rules are based on the domain model, because they use it in the left (condition) and
sometimes in the right (action) side of a rule. The goal of attempting to design flexible
and extendable adornment models implies the need of adjustable rules and most of
all the need of being able to load them on demand by adding them to the Knowledge

1 Web Services

73

9 Discussion

Base at run-time. The loading of the new rules (or packages of rules) and additionally
their regulated propagation to concerned participants should ensue dynamically and the
synchronization between the peers, which are involved in the rules propagation, should
be granted as well.

α-Properties@NodeX

*.pkg

url: ../../..*.pkg

…..

α-Editor

Knowledge

Agent

Knowledge

Base

α-Properties@NodeY

Knowledge

Agent

α-Properties@NodeQ

Knowledge

Agent

α-Properties@NodeZ

Knowledge

Agent

Option A: indirect
Option B: direct

*.drl

*.brl

*.dsl

Option I: Drools Option II: custom

Knowledge

Base

Knowledge

Base
Knowledge

Base

α-Editor

(extended)

Knowledge

Builder

α-Editor

Guvnor
*.drl

*.brl

*.dsl

GUI

Figure 9.1: Dynamic Rule Loading Proposal

Some proposed scenarios for the solution of these issues are described in figure 9.1.
Combinations of options A and B with option I or II are in all variations possible. Options
I and II depict two possible solutions for the creation of rules. Drools Guvnor offers a
fully implemented platform for rule management. As described in section 5.3.5, Guvnor
provides a guided Editor, can manage a great amount of rules and can provide access

74

9.3 Rules Management, Dynamic Load of Rules and Rules Propagation

control for the users. Guvnor builds the new rules directly in packages and makes them
available via an URL, for example. Using Guvnor, however, requires a central installation
and an own repository. All in all, a Guvnor distribution does not fit into the α-Flow
scenario. The second option on the other hand exposes a custom solution. For example,
the existing α-Editor could be extended in order to support an own rule editorial guide.
The Knowledge Builder from Drools can be used to build the rule packages. Once rule
packages are compiled, they must only be made accessible somewhere.
In chapter 6 was explained that a Knowledge Agent is installed in the α-Properties,

which is configured by its initialization to observe resources of knowledge definitions.
Any time a registered resource changes, the Knowledge Agent pulls the new version
and updates the Knowledge Base at run-time. An optimization of the α-Properties can
be made in respect of the memory footprint of the application by providing ready rule
packages (*.pkg) in the resources file. Thus, a Knowledge Builder is not needed any
more and neither is the corresponding drools-compiler library.

Table 9.1: Dynamic Rule Loading Proposal: Options Comparison

criteria option i option ii
Heaviness high depends on the customized solution
Libraries embedded Guvnor extension of the α-Editor needed
GUI provided extension of the α-Editor needed

criteria option a option b
Sovereignty manually (user) Drools (not user, not α-Properties)
Control regulated no control, no policies

Extendibility addition of new packages only at start registered resources

Options A and B expose two different ways of loading the new rules. The direct
way (Option B) is by configuring the Knowledge Agent to observe some registered
knowledge packages and let it autonomously rebuild the Knowledge Base, when they
are changed. This option offers an automatically performed update, which is conducted
from Drools in background. Nevertheless, this approach has some disadvantages as well.
The most important of them is that if a new resource path is added to the property
file of the Knowledge Agent, it is not taken under consideration until a new restart
of the application takes place. A possible solution (Option A) would be if the user
interface interacts with the Knowledge Base and provides a way for the Editor to feed it

75

9 Discussion

with new Knowledge Packages. Drools offers this function of adding rule packages to
an existing Knowledge Base, it must only be assured that they are precompiled. The
addKnowledgePackages() method can be called iteratively to add additional packages.
The propagation of the new rules could either take place as the action of a triggered

rule inside the α-Properties module or be invoked autonomously by the α-Editor itself.
Still another open issue is rights management. There must be some regulations for the

rules, as for example who can alter rules and to what extent. Besides, there should be
policies about the customized rules that would constitute for whom they should be valid:
for the participants of the whole workflow, or just for those involved in the α-Episode, or
just for the radiologists, or the like.

9.4 Versioning and Variants Management

All α-Cards have the adornments version and variant. They have a special purpose in
the status of the α-Card and must be treated separately. It is required that an integrated
version control module is provided, which organizes the different versions and variants
of the documents. It should be possible to rebuild a history of changes of the artifacts
backwards any time an older version or a different variant of it is requested.

9.5 Participant Management

As already discussed at the beginning of this chapter, a dynamic recipient list is required
and a concept for dynamic node registration is missing. Real case scenarios consider
nodes that are mostly offline. As a consequence, a facility for informing the peers of
changes when they go online again is needed. The participant management and the node
registration is to be settled in another afoot thesis.

9.5.1 Access Control

An open security issue is the assignment of writing permissions. So far only the owner of
an α-Card or the participant it was assigned to are allowed to change the card or attach
payload to it. In addition, all private content cards can be altered only by their creator.
That would mean that place-holders cannot be operated on. Up until now, the Editor

76

9.6 Data Synchronization

is in charge of the access control. Nevertheless, the rights management is likely to be
outsourced in the hands of the rule engine in the form of rules. This special rule package
should secure the access to cards, if changes of artifacts are requested.

9.5.2 Assignment of Tokens

There are two special roles that can be assigned to participants in the distributed system
regarding the global workflow. There should be a token for the peer, who starts the
process in the first place: the process initiator and another one for the peer, who dictates
the further steps in the flow: the spokesman. The latter is transferable. It is always in
the hands of that peer, who is temporarily in charge of the workflow, and only as long as
it makes sense in the current episode phase, that he/she is appointed this role. Facilities
are required to create both tokens, and to allow for passing the spokesman token on to
the another peers.

9.6 Data Synchronization

Data synchronization regards the attempt to keep multiple copies of a data set coherent
with one another. It refers to the idea of maintaining data integrity. One possible solution
for the management of distributed incoming requests offer Lamport timestamps [Lam78].
Data synchronization, realized with the help of technical versions, lock protocols and
distributed timestamps, should be considered. There are distributed version control
systems, which detect differentiations between copies and perform merging of their
versions. There is a need of an application-specific solution for the α-Flow artifacts,
which implements similar features and hence realizes synchronization of data, manipulated
by distributed change events.
Beside the technical aspects, there is another issue referring policy assignments: the

order of the events. It should be considered, for instance, whether always the youngest
will be taken and the older ones ignored, or the FIFS (first in, first served) principle
should be applied. Furthermore, it should be determined what kind of changes are
allowed in general and to whom. The status quo is that one participant is treated as a
representative of one node. In reality many nodes are assigned to one participant, which
could lead to the conflict that more than one node try to write at a certain time. There

77

9 Discussion

should be a mechanism that appoints which one of the participant’s nodes has the right
to execute changes. Further, the synchronization among the nodes is required. Thereby
locks offer one possible solution.

9.7 Thread Synchronization and Race Conditions

In order to accept all incoming requests from many simultaneously sending peers, a
devoted thread was set per request at the receiving side of the peer. It was detected that
by doing so, the threads get executed in an unpredictable order. Such race conditions
occur, for example, when a ChangeAdornmentEvent, which is much smaller than the
payload of a content card, is sent after the payload, but reaches its destination before it.
A possible solution for an enforced sequential execution of the threads at the receiving
end in the same order as they are created, is using a queue or some kind of buffer to
store the threads and then start them one after the other. As a work-around for this,
the UpdateServiceReceiver does not create for every accepted socket connection a new
thread any more, but confides in sequential arrival of the requests. Unfortunately, in a
network of multiple connected peers this cannot always be the case. So, an improvement
is hereto needed perhaps, as suggested, with the help of a buffer.

Sending multiple payloads out of the sockets into the network and expecting them to
arrive on the other side in the same order they left the source is not possible. It often
comes to race conditions on the way and the network payloads arrive in arbitrary order.
But sometimes the order is of great importance. It can happen that by insertion of the
transported units different rules can be matched, depending on what the former arrived
payloads were.

9.8 Persistence

Along with its function as a version manager, the VerVarStore module is responsible
for storing the artifacts and their payloads. A different approach for the persistence
is proposed by shifting this responsibility to the α-Properties module. So far it is
document-based and time-consuming. But the storage management of the artifacts
could be in fact conducted already in the Working Memory. Hence the persistence

78

9.9 Network Security

becomes under the control of Drools. In order to persist objects from the Working
Memory one can use the Java Persistence API (JPA) and a Java Transaction API (JTA)
implementation, organizing the data eventually in an embedded database. Along with it
come all advantages databases provide, such as full support for the ACID1 guarantees.

9.9 Network Security

Artifacts are sent from one participant to the other through intricate networks. In
distributed systems, where sensible data exchange takes place, network security is a great
issue. Furthermore, the transport in the networks, despite potential firewalls, must be
possible. Among others, it should be assured that the data is transferred and accepted
unforged. Cryptographic algorithms could be used to encrypt the sent network payload.
The non-repudiation of the received data must be granted, e. g. by signing the data could
ensure its accountability. Additionally, the confidentiality of the transferred artifacts in
the context of the sensible nature of the patient’s private data and the proper access
control over this data must be warranted as well. The integrity of the data as a whole
and its availability by all means should be assured as well. As none of these security
issues was covered in the prototype design, they are still subject for future work on the
α-Overlay-Network component.

9.10 Import and Export von "Process Templates"

Common procedures for treatment episodes which take place always by the book can be
used for creating "process templates". After defining a treatment workflow of that kind,
it could be useful to export it as a template. α-Flows (or distinct α-Episodes) can be
reproduced based on the coordination cards. A possible form for such templates could
be the TSA-Payload document without the actual cards, but only with references of
the needed ones. When such templates are available, healthcare workers can optimize
the treatment process by just importing them and starting up the workflow. The same
could be applied for the CRA-Payload, if a certain group of participants are used to

1 ACID - Atomicity, Consistency, Isolation, Durability

79

9 Discussion

be working together in the scope of particular treatment episodes. Such "nice to have"
features can be applicable in case of pre-structured workflows.

80

10 Conclusion

Exchange of patient’s personal data and treatment-associated documents in healthcare
requires an infrastructure, that suffuses the impediments distributed heterogeneous
systems bring along. A document-oriented workflow approach was considered, which
focuses on the relationship between content and coordination aspects of collaborative and
inter-institutional environments. The α-Flow model assigns collaboration issues to the
documents - the artifacts that constitute the primary means of information exchange. A
part of this infrastructure is a rule-based system, called α-Properties. The α-Properties
reside within a document. They contribute to its autonomy and liveliness and assemble
it to an active document. Such documents are the α-Docs. The models of content and
coordination α-Cards were also explained. The cards represent the mapping from the
classical paper-based medical records with some meta process-relevant data in the form
of adornments.
The feasibility of the concept is proven by a reference implementation of the α-

Properties. The module follows the adopted functional requirements, detailed in chapter
4. This module orchestrates logic in the form of predefined knowledge (models and rules)
and deals with the execution of actions, occurred as a result of triggered rules. Its main
contributions are dynamically changing of the α-Cards metadata, the management of
versions of the artifacts and the propagation of changes and other units to all concerned
parties in the workflow. The α-Properties were designed to understand requests for
workflow extension by adding new artifacts dynamically to the list of existing content
cards or requests for updating the metadata and payload of the α-Card. Apart from
the events, caused by the user, there are several internal events that are triggered by
the α-Properties itself, as a unit of autonomy. These internal events, activated within
the module, are result of the reasoning over the current state of the facts. Therefore,
requests for changes by the user are interpreted individually. As a result, the changes
that take place are sometimes only local, but sometimes they get propagated also to the

81

10 Conclusion

other participants. In order to keep the users informed about what actions their requests
have triggered, notifications are sent to them.
The design of the α-Flow results in a comprehensive impact on the way treatment

episodes are organized in medicine. A dynamic evolution of workflow steps in combination
of fine-grained control units (α-Docs) satisfy the need for retained autonomy of the peers
in distributed systems. The α-Properties offer a solution, which can be considered for
any infrastructure that presumes its artifacts to be active documents that maintain
built-in functionality and support distributed systems in their heterogeneous and complex
nature.

82

A The Rule Package

1 package alpha.props.rules

2

3 #import classes

4 import org.drools.WorkingMemory

5 import java.util.LinkedHashSet

6 import java.util.HashSet

7 import java.util.Set

8

9 import alpha.adornment.AdornmentType

10 import alpha.adornment.AlphaCardType

11 import alpha.adornment.FundamentalSemanticType

12 import alpha.adornment.Priority

13 import alpha.adornment.Visibility

14 import alpha.adornment.Validity

15 import alpha.eventfact.AddAlphaCardEvent

16 import alpha.eventfact.ChangeAdornmentEvent

17 import alpha.eventfact.ChangePayloadEvent

18 import alpha.eventfact.CheckChangeabilityEvent

19 import alpha.model.AlphaCard

20 import alpha.model.AlphaDoc

21 import alpha.model.AlphaCardRelationship

22 import alpha.model.NodeID

23 import alpha.model.ObjectID

24 import alpha.model.Participant

25 import alpha.model.SubjectID

26 import alpha.model.identification.AlphaCardIdentifier

27 import alpha.payload.Payload

28 import alpha.payload.tsa.TSAPayload

29 import alpha.payload.cra.CRAPayload

30 import alpha.service.impl.AlphaPropsFacadeImpl

31 import alpha.service.UpdateServiceSender

83

32 import alpha.services.VerVarStore

33 import alpha.vvs.VerVarStoreImpl

34 import alpha.utility.StringWrapper

35

36 #queries

37 query "alphaDoc"

38 ad : AlphaDoc ()

39 end

40

41 query "alphaCards"

42 ac : AlphaCard ()

43 end

44

45 query "alphaCardByID" (AlphaCardIdentifier acid)

46 ac : AlphaCard(id == acid)

47 end

48

49 #global variables

50 global

51 UpdateServiceSender updateServiceSender

52

53 #functions

54 function Set getNodeIDs(CRAPayload craPayload) {

55 Set <NodeID > nodeIDs = new HashSet <NodeID >();

56 for (Participant participant : craPayload.getLoParticipants ())

{

57 nodeIDs.add(participant.getNode ());

58 }

59 return nodeIDs;

60 }

61

62 function void sendAlphaCard(AlphaCard ac, CRAPayload craPayload ,

UpdateServiceSender updateServiceSender) {

63 updateServiceSender.sendUpdate(ac , getNodeIDs(craPayload));

64 }

65

66 function void propagateAdornmentChange(ChangeAdornmentEvent cae ,

CRAPayload craPayload , UpdateServiceSender updateServiceSender) {

67 cae.setPropagateChange(false);

84

A The Rule Package

68 updateServiceSender.sendUpdate(cae , getNodeIDs(craPayload));

69 }

70

71 function void propagatePayloadChange(ChangePayloadEvent cpe ,

CRAPayload craPayload , UpdateServiceSender updateServiceSender) {

72 cpe.setPropagateChange(false);

73 updateServiceSender.sendUpdate(cpe , getNodeIDs(craPayload));

74 }

75

76 ###################################

77 ### Add an AlphaCard Rules ########

78 ###################################

79 rule "Add a place -holder content alphaCard"

80 no -loop true

81 when

82 craPayload : CRAPayload ()

83 aace : AddAlphaCardEvent(ac : alphaCard)

84 tsa : AlphaCard(tsaAcid : id)

85 eval(tsaAcid.getCardID ().equals("$tsa"))

86 then

87 insert(ac);

88

89 ChangePayloadEvent cpe = new ChangePayloadEvent(tsaAcid , ac.

getId ());

90 cpe.setPropagateChange(true);

91 insert(cpe);

92

93 sendAlphaCard(ac, craPayload , updateServiceSender);

94 retract(aace);

95 end

96

97 rule "Add a content alphaCard (PUBLIC)"

98 no -loop true

99 when

100 vvs : VerVarStoreImpl ()

101 ac : AlphaCard(acid : id , vis : visibility)

102 eval(vis == Visibility.PUBLIC)

103 _ac : AlphaCard(id == acid && visibility == Visibility.

PRIVATE)

85

104 then

105 retract(_ac);

106 end

107

108 ###################################

109 ### Check Changeability Rules #####

110 ###################################

111 rule "Check Changeabilty: card does not have payload"

112 no-loop true

113 activation -group "check changeability"

114 when

115 chre : CheckChangeabilityEvent(acid : alphaCardID , hp :

hasPayload)

116 ac : AlphaCard(id == acid)

117 eval(hp == true)

118 then

119 chre.getChangeables ().

120 put(AdornmentType.SUBJECT , Boolean.TRUE);

121 chre.getChangeables ().

122 put(AdornmentType.TITLE , Boolean.TRUE);

123 chre.getChangeables ().

124 put(AdornmentType.ALPHACARDTYPE , Boolean.TRUE);

125 chre.getChangeables ().

126 put(AdornmentType.FUNDAMENTALSEMANTICTYPE , Boolean.FALSE);

127 chre.getChangeables ().

128 put(AdornmentType.VALIDITY , Boolean.FALSE);

129 chre.getChangeables ().

130 put(AdornmentType.VISIBILITY , Boolean.FALSE);

131 chre.getChangeables ().

132 put(AdornmentType.VARIANT , Boolean.FALSE);

133 chre.getChangeables ().

134 put(AdornmentType.VERSION , Boolean.FALSE);

135 chre.getChangeables ().

136 put(AdornmentType.SPTYPE , Boolean.TRUE);

137 chre.getChangeables ().

138 put(AdornmentType.OBJECT , Boolean.FALSE);

139 chre.getChangeables ().

140 put(AdornmentType.VERSIONING , Boolean.FALSE);

141 chre.getChangeables ().

86

A The Rule Package

142 put(AdornmentType.DUEDATE , Boolean.TRUE);

143 chre.getChangeables ().

144 put(AdornmentType.DEFERRED , Boolean.TRUE);

145 chre.getChangeables ().

146 put(AdornmentType.DELETED , Boolean.TRUE);

147 chre.getChangeables ().

148 put(AdornmentType.PRIORITY , Boolean.TRUE);

149 update(chre);

150 end

151

152 rule "Check Changeabilty: card has payload"

153 no -loop true

154 activation -group "check changeability"

155 when

156 chre : CheckChangeabilityEvent(acid : alphaCardID , hp :

hasPayload)

157 ac : AlphaCard(id == acid)

158 eval(hp == false)

159 then

160 chre.getChangeables ().

161 put(AdornmentType.SUBJECT , Boolean.FALSE);

162 chre.getChangeables ().

163 put(AdornmentType.TITLE , Boolean.TRUE);

164 chre.getChangeables ().

165 put(AdornmentType.ALPHACARDTYPE , Boolean.FALSE);

166 chre.getChangeables ().

167 put(AdornmentType.FUNDAMENTALSEMANTICTYPE , Boolean.FALSE);

168 chre.getChangeables ().

169 put(AdornmentType.OBJECT , Boolean.FALSE);

170

171 if(ac.getVisibility () == Visibility.PUBLIC) {

172 chre.getChangeables ().

173 put(AdornmentType.VISIBILITY , Boolean.FALSE);

174 } else {

175 chre.getChangeables ().

176 put(AdornmentType.VISIBILITY , Boolean.TRUE);

177 }

178

179 if(ac.getValidity () == Validity.VALID) {

87

180 chre.getChangeables ().

181 put(AdornmentType.VALIDITY , Boolean.FALSE);

182 } else {

183 chre.getChangeables ().

184 put(AdornmentType.VALIDITY , Boolean.TRUE);

185 }

186

187 chre.getChangeables ().

188 put(AdornmentType.VARIANT , Boolean.TRUE);

189 chre.getChangeables ().

190 put(AdornmentType.VERSION , Boolean.TRUE);

191 chre.getChangeables ().

192 put(AdornmentType.SPTYPE , Boolean.TRUE);

193

194 if(ac.isVersioning ()) {

195 chre.getChangeables ().

196 put(AdornmentType.VERSIONING , Boolean.FALSE);

197 } else {

198 chre.getChangeables ().

199 put(AdornmentType.VERSIONING , Boolean.TRUE);

200 }

201

202 chre.getChangeables ().

203 put(AdornmentType.DUEDATE , Boolean.TRUE);

204 chre.getChangeables ().

205 put(AdornmentType.DEFERRED , Boolean.TRUE);

206 chre.getChangeables ().

207 put(AdornmentType.DELETED , Boolean.TRUE);

208 chre.getChangeables ().

209 put(AdornmentType.PRIORITY , Boolean.TRUE);

210 update(chre);

211 end

212

213 rule "Check Changeabilty: card is marked as deleted"

214 no-loop true

215 activation -group "check changeability"

216 when

217 chre : CheckChangeabilityEvent(acid : alphaCardID , hp :

hasPayload)

88

A The Rule Package

218 ac : AlphaCard(id == acid)

219 eval(ac.isDeleted () == true)

220 then

221 alpha.adornment.AdornmentType [] types = alpha.adornment.

AdornmentType.class.getEnumConstants ();

222 for(int i = 0; i < types.length; i++) {

223 if(types[i]. equals(AdornmentType.DELETED)) {

224 chre.getChangeables ().put(types[i], Boolean.TRUE);

225 } else {

226 chre.getChangeables ().put(types[i], Boolean.FALSE);

227 }

228 }

229 end

230

231 ###################################

232 ### Change Adornments Rules #######

233 ###################################

234 rule "Set visibility"

235 no -loop true

236 when

237 craPayload : CRAPayload ()

238 vvs : VerVarStoreImpl ()

239 cae : ChangeAdornmentEvent(acid : alphaCardID , at :

adornmentType , nv : newValue , pc : propagateChange)

240 ac : AlphaCard(id == acid , vis : visibility)

241 eval(at.equals(AdornmentType.VISIBILITY) && (vis == Visibility

.PRIVATE || vis == null))

242 then

243 modify(ac) { setVisibility ((Visibility)nv) };

244 if(pc == true && ((Visibility)nv).equals(Visibility.PUBLIC)) {

245 sendAlphaCard(ac, craPayload , updateServiceSender);

246

247 if(vvs.getPayload(acid) != null) {

248 ChangePayloadEvent cpe = new ChangePayloadEvent(acid ,

vvs.getPayload(acid));

249 propagatePayloadChange(cpe , craPayload ,

updateServiceSender);

250 }

251 }

89

252

253 retract(cae);

254 end

255

256 rule "Once valid and public , start versioning"

257 no-loop true

258 salience 50

259 when

260 ac : AlphaCard ()

261 eval(ac.getVisibility () == Visibility.PUBLIC && ac.getValidity

() == Validity.VALID && !ac.isVersioning ())

262 then

263 #start versioning from now on

264 modify(ac) { setVersioning(true) };

265 end

266

267 rule "Set validity"

268 no-loop true

269 when

270 craPayload : CRAPayload ()

271 cae : ChangeAdornmentEvent(acid : alphaCardID , at :

adornmentType , nv : newValue , pc : propagateChange)

272 ac : AlphaCard(id == acid , val : validity)

273 eval(at.equals(AdornmentType.VALIDITY) && (val == Validity.

INVALID || val == null))

274 then

275 modify(ac) { setValidity ((Validity)nv) };

276

277 if(pc == true) {

278 propagateAdornmentChange(cae , craPayload ,

updateServiceSender);

279 }

280

281 retract(cae);

282 end

283

284 #new values sent from user will be ignored!

285 rule "Set version"

286 no-loop true

90

A The Rule Package

287 when

288 craPayload : CRAPayload ()

289 vvs : VerVarStoreImpl ()

290 cae : ChangeAdornmentEvent(acid : alphaCardID , at :

adornmentType , pc : propagateChange)

291 ac : AlphaCard(id == acid)

292 eval(at.equals(AdornmentType.VERSION))

293 then

294 StringWrapper _nv = new StringWrapper(String.valueOf ((Double.

valueOf(ac.getVersion ()).doubleValue () + 1)));

295

296 if (!ac.isVersioning ()) {

297 modify(ac) { setVersioning(true) };

298 }

299 #new version

300 modify(ac) { setVersion(_nv.getNewValue ()) };

301

302 if(pc == true) {

303 cae.setNewValue(_nv);

304 propagateAdornmentChange(cae , craPayload ,

updateServiceSender);

305 }

306 retract(cae);

307

308 if(vvs.getPayload(acid) != null) {

309 vvs.setSptype(ac.getSPType ());

310 vvs.setVersion(String.valueOf ((Double.valueOf(ac.

getVersion ()).doubleValue ())));

311 vvs.putPayload(acid , vvs.getPayload(acid));

312 }

313 end

314

315 rule "Set variant"

316 no -loop true

317 when

318 craPayload : CRAPayload ()

319 cae : ChangeAdornmentEvent(acid : alphaCardID , at :

adornmentType , nv : newValue , pc : propagateChange)

320 ac : AlphaCard(id == acid)

91

321 eval(at.equals(AdornmentType.VARIANT))

322 then

323 if(ac.getVariant () == null || ac.getVariant ().equals("-")) {

324 ac.setVariant("0");

325 }

326 if(nv instanceof StringWrapper && (Integer.valueOf (((

StringWrapper)nv).getNewValue ()) > Integer.valueOf(ac.

getVariant ()))) {

327 modify(ac) { setVariant (((StringWrapper)nv).getNewValue ())

};

328

329 if(pc == true) {

330 propagateAdornmentChange(cae , craPayload ,

updateServiceSender);

331 }

332 } else if (nv instanceof String && (Integer.valueOf ((String)nv

) > Integer.valueOf(ac.getVariant ()))) {

333 StringWrapper _nv = new StringWrapper ((String)nv);

334 modify(ac) { setVariant(_nv.getNewValue ()) };

335

336 if(pc == true) {

337 cae.setNewValue(_nv);

338 propagateAdornmentChange(cae , craPayload ,

updateServiceSender);

339 }

340 }

341 retract(cae);

342 end

343

344 rule "Set dueDate"

345 no-loop true

346 when

347 craPayload : CRAPayload ()

348 cae : ChangeAdornmentEvent(acid : alphaCardID , at :

adornmentType , nv : newValue , pc : propagateChange)

349 ac : AlphaCard(id == acid)

350 eval(at.equals(AdornmentType.DUEDATE))

351 then

352 if(nv instanceof StringWrapper) {

92

A The Rule Package

353 modify(ac) { setDueDate (((StringWrapper)nv).getNewValue ()

) };

354

355 if(pc == true) {

356 propagateAdornmentChange(cae , craPayload ,

updateServiceSender);

357 }

358 } else {

359 StringWrapper _nv = new StringWrapper ((String)nv);

360 modify(ac) { setDueDate(_nv.getNewValue ()) };

361

362 if(pc == true) {

363 cae.setNewValue(_nv);

364 propagateAdornmentChange(cae , craPayload ,

updateServiceSender);

365 }

366 }

367 retract(cae);

368 end

369

370 rule "Set priority"

371 no -loop true

372 when

373 craPayload : CRAPayload ()

374 cae : ChangeAdornmentEvent(acid : alphaCardID , at :

adornmentType , nv : newValue , pc : propagateChange)

375 ac : AlphaCard(id == acid)

376 eval(at.equals(AdornmentType.PRIORITY))

377 then

378 modify(ac) { setPriority ((Priority)nv) };

379

380 if(pc == true) {

381 propagateAdornmentChange(cae , craPayload ,

updateServiceSender);

382 }

383 retract(cae);

384 end

385

386 rule "Set deleted"

93

387 no-loop true

388 when

389 craPayload : CRAPayload ()

390 cae : ChangeAdornmentEvent(acid : alphaCardID , at :

adornmentType , nv : newValue , pc : propagateChange)

391 ac : AlphaCard(id == acid)

392 eval(at.equals(AdornmentType.DELETED))

393 then

394 if(nv instanceof StringWrapper) {

395 modify(ac) { setDeleted(Boolean.valueOf (((StringWrapper)nv

).getNewValue ())) };

396

397 if(pc == true) {

398 propagateAdornmentChange(cae , craPayload ,

updateServiceSender);

399 }

400 } else {

401 StringWrapper _nv = new StringWrapper(String.valueOf(nv));

402 modify(ac) { setDeleted(Boolean.valueOf(_nv.getNewValue ())

) };

403

404 if(pc == true) {

405 cae.setNewValue(_nv);

406 propagateAdornmentChange(cae , craPayload ,

updateServiceSender);

407 }

408 }

409 retract(cae);

410 end

411

412 rule "Set deferred"

413 no-loop true

414 when

415 craPayload : CRAPayload ()

416 cae : ChangeAdornmentEvent(acid : alphaCardID , at :

adornmentType , nv : newValue , pc : propagateChange)

417 ac : AlphaCard(id == acid)

418 eval(at.equals(AdornmentType.DEFERRED))

419 then

94

A The Rule Package

420 if(nv instanceof StringWrapper) {

421 modify(ac) { setDeferred(Boolean.valueOf (((StringWrapper)

nv).getNewValue ())) };

422

423 if(pc == true) {

424 propagateAdornmentChange(cae , craPayload ,

updateServiceSender);

425 }

426 } else {

427 StringWrapper _nv = new StringWrapper(String.valueOf(nv));

428 modify(ac) { setDeferred(Boolean.valueOf(_nv.getNewValue ()

)) };

429

430 if(pc == true) {

431 cae.setNewValue(_nv);

432 propagateAdornmentChange(cae , craPayload ,

updateServiceSender);

433 }

434 }

435 retract(cae);

436 end

437

438 rule "Set object (patient)"

439 no -loop true

440 when

441 craPayload : CRAPayload ()

442 cae : ChangeAdornmentEvent(acid : alphaCardID , at :

adornmentType , nv : newValue , pc : propagateChange)

443 ac : AlphaCard(id == acid)

444 eval(at.equals(AdornmentType.OBJECT))

445 then

446 modify(ac) { setObject ((ObjectID)nv) };

447

448 if(pc == true) {

449 propagateAdornmentChange(cae , craPayload ,

updateServiceSender);

450 }

451 retract(cae);

452 end

95

453

454 rule "Set subject (owner of the alphaCard)"

455 no-loop true

456 when

457 craPayload : CRAPayload ()

458 cae : ChangeAdornmentEvent(acid : alphaCardID , at :

adornmentType , nv : newValue , pc : propagateChange)

459 ac : AlphaCard(id == acid)

460 eval(at.equals(AdornmentType.SUBJECT))

461 then

462 modify(ac) { setSubject ((SubjectID)nv) };

463

464 if(pc == true) {

465 propagateAdornmentChange(cae , craPayload ,

updateServiceSender);

466 }

467 retract(cae);

468 end

469

470 rule "Set alphaCard name"

471 no-loop true

472 when

473 craPayload : CRAPayload ()

474 cae : ChangeAdornmentEvent(acid : alphaCardID , at :

adornmentType , nv : newValue , pc : propagateChange)

475 ac : AlphaCard(id == acid)

476 eval(at.equals(AdornmentType.TITLE))

477 then

478 if(nv instanceof StringWrapper) {

479 modify(ac) { setAlphaCardName (((StringWrapper)nv).

getNewValue ()) };

480

481 if(pc == true) {

482 propagateAdornmentChange(cae , craPayload ,

updateServiceSender);

483 }

484 } else {

485 StringWrapper _nv = new StringWrapper ((String)nv);

486 modify(ac) { setAlphaCardName(_nv.getNewValue ()) };

96

A The Rule Package

487

488 if(pc == true) {

489 cae.setNewValue(_nv);

490 propagateAdornmentChange(cae , craPayload ,

updateServiceSender);

491 }

492 }

493 retract(cae);

494 end

495

496 rule "Set syntactic payload type"

497 no -loop true

498 when

499 craPayload : CRAPayload ()

500 cae : ChangeAdornmentEvent(acid : alphaCardID , at :

adornmentType , nv : newValue , pc : propagateChange)

501 ac : AlphaCard(id == acid)

502 eval(at.equals(AdornmentType.SPTYPE))

503 then

504 if(nv instanceof StringWrapper) {

505 modify(ac) { setSPType (((StringWrapper)nv).getNewValue ())

};

506

507 if(pc == true) {

508 propagateAdornmentChange(cae , craPayload ,

updateServiceSender);

509 }

510 } else {

511 StringWrapper _nv = new StringWrapper ((String)nv);

512 modify(ac) { setSPType(_nv.getNewValue ()) };

513

514 if(pc == true) {

515 cae.setNewValue(_nv);

516 propagateAdornmentChange(cae , craPayload ,

updateServiceSender);

517 }

518 }

519 retract(cae);

520 end

97

521

522 rule "Set alphaCard type"

523 no-loop true

524 when

525 craPayload : CRAPayload ()

526 cae : ChangeAdornmentEvent(acid : alphaCardID , at :

adornmentType , nv : newValue , pc : propagateChange)

527 ac : AlphaCard(id == acid)

528 eval(at.equals(AdornmentType.ALPHACARDTYPE))

529 then

530 modify(ac) { setAlphaCardType ((AlphaCardType)nv) };

531

532 if(pc == true) {

533 propagateAdornmentChange(cae , craPayload ,

updateServiceSender);

534 }

535 retract(cae);

536 end

537

538 rule "Set versioning"

539 no-loop true

540 when

541 craPayload : CRAPayload ()

542 cae : ChangeAdornmentEvent(acid : alphaCardID , at :

adornmentType , nv : newValue , pc : propagateChange)

543 ac : AlphaCard(id == acid)

544 eval(at.equals(AdornmentType.VERSIONING))

545 then

546 if(nv instanceof StringWrapper) {

547 modify(ac) { setVersioning(Boolean.valueOf (((StringWrapper

)nv).getNewValue ())) };

548

549 if(pc == true) {

550 propagateAdornmentChange(cae , craPayload ,

updateServiceSender);

551 }

552 } else {

553 StringWrapper _nv = new StringWrapper(String.valueOf(nv));

98

A The Rule Package

554 modify(ac) { setVersioning(Boolean.valueOf(_nv.getNewValue

())) };

555

556 if(pc == true) {

557 cae.setNewValue(_nv);

558 propagateAdornmentChange(cae , craPayload ,

updateServiceSender);

559 }

560 }

561 retract(cae);

562 end

563

564 ###################################

565 ### Change Payload Rules ##########

566 ###################################

567 rule "Add a new content alphaCard to the ToDoItems"

568 when

569 vvs : VerVarStoreImpl ()

570 tsaPayload : TSAPayload ()

571 craPayload : CRAPayload ()

572 cpe : ChangePayloadEvent(acid : alphaCardID , o : obj , pc :

propagateChange)

573 ac : AlphaCard(id == acid)

574 eval(acid.getCardID ().equals("$tsa") && o instanceof

AlphaCardIdentifier)

575 then

576 tsaPayload.getLoTodoItems ().add((AlphaCardIdentifier)o);

577

578 #new version

579 modify(ac) { setVersion(String.valueOf ((Double.valueOf(ac.

getVersion ()).doubleValue () + 1)))}

580

581 if(pc == true) {

582 propagatePayloadChange(cpe , craPayload ,

updateServiceSender);

583 }

584

585 vvs.setSptype("xml");

586 vvs.setVersion(ac.getVersion ());

99

587 vvs.putPayload(acid , tsaPayload);

588

589 retract(cpe);

590 end

591

592 rule "Add a relationship"

593 when

594 vvs : VerVarStoreImpl ()

595 tsaPayload : TSAPayload ()

596 craPayload : CRAPayload ()

597 cpe : ChangePayloadEvent(acid : alphaCardID , o : obj , pc :

propagateChange)

598 ac : AlphaCard(id == acid)

599 eval(acid.getCardID ().equals("$tsa") && o instanceof

AlphaCardRelationship)

600 then

601 tsaPayload.getLoTodoRelationships ().add((AlphaCardRelationship

)o);

602 #new version

603 modify(ac) { setVersion(String.valueOf ((Double.valueOf(ac.

getVersion ()).doubleValue () + 1)))}

604

605 if(pc == true) {

606 propagatePayloadChange(cpe , craPayload ,

updateServiceSender);

607 }

608

609 vvs.setSptype("xml");

610 vvs.setVersion(ac.getVersion ());

611 vvs.putPayload(acid , tsaPayload);

612

613 retract(cpe);

614 end

615

616 rule "Add or update a participant"

617 when

618 vvs : VerVarStoreImpl ()

619 craPayload : CRAPayload ()

100

A The Rule Package

620 cpe : ChangePayloadEvent(acid : alphaCardID , o : obj , pc :

propagateChange)

621 ac : AlphaCard(id == acid)

622 eval(o instanceof Participant)

623 eval(acid.getCardID ().equals("$cra") && o instanceof

Participant)

624 then

625 #update participant

626 for (Participant participant : craPayload.getLoParticipants ())

{

627 if(participant.getSubject ().equals (((Participant)o).

getSubject ())) {

628 System.out.println("RULE NAME: \" CRAPayload: Add or

update a participant - UPDATE \" ");

629 craPayload.getLoParticipants ().remove(participant);

630 craPayload.getLoParticipants ().add((Participant)o);

631

632 #new version

633 modify(ac) { setVersion(String.valueOf ((Double.valueOf

(ac.getVersion ()).doubleValue () + 1)))}

634

635 if(pc == true) {

636 propagatePayloadChange(cpe , craPayload ,

updateServiceSender);

637 }

638

639 vvs.setSptype("xml");

640 vvs.setVersion(ac.getVersion ());

641 vvs.putPayload(acid , craPayload);

642 }

643 }

644

645 # add another participant

646 if(! craPayload.getLoParticipants ().contains ((Participant)o)) {

647 System.out.println("RULE NAME: \" CRAPayload: Add or

update a participant - ADD\" ");

648 craPayload.getLoParticipants ().add((Participant)o);

649

650 #new version

101

651 modify(ac) { setVersion(String.valueOf ((Double.valueOf(ac.

getVersion ()).doubleValue () + 1)))}

652

653 if(pc == true) {

654 propagatePayloadChange(cpe , craPayload ,

updateServiceSender);

655 }

656

657 vvs.setSptype("xml");

658 vvs.setVersion(ac.getVersion ());

659 vvs.putPayload(acid , craPayload);

660 }

661

662 retract(cpe);

663 end

664

665 rule "Add payload to a content alphaCard"

666 when

667 vvs : VerVarStoreImpl ()

668 craPayload : CRAPayload ()

669 cpe : ChangePayloadEvent(acid : alphaCardID , o : obj , pc :

propagateChange)

670 ac : AlphaCard(id == acid)

671 eval(o instanceof Payload)

672 then

673 vvs.setSptype(ac.getSPType ());

674

675 if(ac.isVersioning ()) {

676 #new version

677 modify(ac) { setVersion(String.valueOf ((Double.valueOf(ac.

getVersion ()).doubleValue () + 1)))}

678 vvs.setVersion(ac.getVersion ());

679 } else {

680 vvs.setVersion("0");

681 }

682

683 vvs.putPayload(acid , (Payload) o);

684

685 if(pc == true) {

102

A The Rule Package

686 propagatePayloadChange(cpe , craPayload ,

updateServiceSender);

687 }

688

689 retract(cpe);

690 end

Listing A.1: The Rule Package

103

Bibliography

[ACJZ08] J. Adamczyk, R. Chojnacki, M. Jarząb, and K. Zieliński. Rule Engine
Based Lightweight Framework for Adaptive and Autonomic Computing.
Computational Science–ICCS 2008, pages 355–364, 2008.

[CWW+06] B. Chaudhry, J. Wang, S. Wu, M. Maglione, W. Mojica, E. Roth, S.C.
Morton, and P.G. Shekelle. Systematic review: impact of health information
technology on quality, efficiency, and costs of medical care. Annals of internal
medicine, 144(10):742, 2006.

[DBM88] U. Dayal, A. Buchmann, and D. McCarthy. Rules are objects too: a
knowledge model for an active, object-oriented database system. Advances
in Object-Oriented Database Systems, pages 129–143, 1988.

[DEH+00] P. Dourish, W. K. Edwards, J. Howell, A. LaMarca, J. Lamping, K. Petersen,
M. Salisbury, D. Terry, and J. Thornton. A programming model for active
documents. In Proc of the 13th annual ACM symposium on User interface
software and technology, pages 41–50. ACM New York, NY, USA, 2000.

[DKM86] Klaus R. Dittrich, Angelika M. Kotz, and Jutta A. Mülle. An event/trigger
mechanism to enforce complex consistency constraints in design databases.
SIGMOD Rec., 15(3):22–36, 1986.

[Dro10] JBoss Drools Documentation. http://www.jboss.org/drools/

documentation.html, 2010.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements
of reusable object-oriented software. Addison-wesley Reading, MA, 1995.

[HK02] Jan Hannemann and Gregor Kiczales. Design pattern implementation in
java and aspectj. SIGPLAN Not., 37(11):161–173, 2002.

I

http://www.jboss.org/drools/documentation.html
http://www.jboss.org/drools/documentation.html

Bibliography

[HM00] E. Heinrich and H.A. Maurer. Active documents: Concept, implementation
and applications. Journal of Universal Computer Science, 6(12):1197–1202,
2000.

[HS09] T. Heimrich and G. Specht. Enhancing ECA Rules for Distributed Active
Database Systems. Web, Web-Services, and Database Systems, pages 199–
205, 2009.

[Jac98] Peter Jackson. Introduction to Expert Systems. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1998.

[JSR02] Java Community Process. JSR 94 Java Rule Engine API. http://www.jcp.

org/en/jsr/detail?id=94, 2002.

[KL98] A. Koschel and P.C. Lockemann. Distributed events in active database
systems: Letting the genie out of the bottle. Data & Knowledge Engineering,
25(1-2):11–28, 1998.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558–565, 1978.

[LED+99] A. LaMarca, W. K. Edwards, P. Dourish, J. Lamping, I. Smith, and J. Thorn-
ton. Taking the work out of workflow: mechanisms for document-centered
collaboration. In Proc of the 6th conference on European Conference on Com-
puter Supported Cooperative Work, pages 1–20. Kluwer Academic Publishers
Norwell, USA, 1999.

[LR07] R. Lenz and M. Reichert. IT support for healthcare processes-premises,
challenges, perspectives. Data & Knowledge Engineering, 61(1):39–58, 2007.

[MD89] Dennis McCarthy and Umeshwar Dayal. The architecture of an active
database management system. In SIGMOD ’89: Proceedings of the 1989
ACM SIGMOD international conference on Management of data, pages
215–224, New York, NY, USA, 1989. ACM.

[NL09] Christoph P. Neumann and Richard Lenz. alpha-Flow: A Document-based
Approach to Inter-Institutional Process Support in Healthcare. In Proc of the

II

http://www.jcp.org/en/jsr/detail?id=94
http://www.jcp.org/en/jsr/detail?id=94

Bibliography

3rd Int’l Workshop on Process-oriented Information Systems in Healthcare
(ProHealth ’09) in conjunction with the 7th Int’l Conf on Business Process
Management (BPM’09), Ulm, Germany, September 2009.

[NL10] Christoph P. Neumann and Richard Lenz. The alpha-Flow Use-Case of Breast
Cancer Treatment – Modeling Inter-Institutional Healthcare Workflows
by Active Documents. In Proc of the 8th Int’l Workshop on Agent-based
Computing for Enterprise Collaboration (ACEC) at the 19th Int’l Workshops
on Enabling Technologies: Infrastructures for Collaborative Enterprises
(WETICE 2010), Larissa, Greece, June 2010.

[WKJ+01] P. Werle, F. Kilander, M. Jonsson, P. Lönnqvist, and C. Jansson. A
ubiquitous service environment with active documents for teamwork support.
In Ubicomp 2001: Ubiquitous Computing, pages 139–155. Springer, 2001.

III

	List of Abbreviations
	1 Introduction
	1.1 Motivation and Challenges
	1.2 The Role of the Active-properties

	2 Methods
	3 Basics
	3.1 Distributed Systems
	3.2 Process/Workflow
	3.3 Active Documents
	3.4 ECA-Paradigm vs. Inference Engines
	3.5 Conclusion

	4 Requirements Analysis
	4.1 The Domain Model
	4.1.1 The Artifacts: -Doc and -Cards
	4.1.2 The Adornment Models

	4.2 Overview: -Flow Components
	4.3 Functional Requirements Framework
	4.4 Functional Requirements of the API
	4.4.1 Motivating the Usage of a Rule Engine
	4.4.2 Requirements of the API

	4.5 Non-Functional Requirements
	4.6 Conclusion

	5 Rule Engines and JBoss Drools
	5.1 Rule Engines
	5.2 JSR-94
	5.3 JBoss Drools
	5.3.1 Subprojects Overview
	5.3.2 Drools Expert
	5.3.3 Drools Fusion
	5.3.4 Drools Flow
	5.3.5 Drools Guvnor

	5.4 Conclusion

	6 Proposed Solution: -Properties
	6.1 Architecture Overview
	6.2 The -Properties Interface
	6.3 The -VerVarStore Interface
	6.4 The Update Service Interfaces
	6.5 Conclusion

	7 System Design: -Properties
	7.1 The -Model
	7.2 The -PropsFacade Interface
	7.3 The Events Classification
	7.3.1 Application-specific Events
	7.3.2 Technical Events

	7.4 The Groups of Rules
	7.4.1 Adding a New Content -Card
	7.4.2 Checking the Changeability of Adornments
	7.4.3 Changing an Adornment
	7.4.4 Changing Payload

	7.5 Propagating Updates
	7.6 Notification
	7.7 Conclusion

	8 Implementation Issues
	8.1 The Rule Package
	8.1.1 Queries
	8.1.2 Globals
	8.1.3 Functions
	8.1.4 Rules

	8.2 Distribution
	8.3 Monitoring
	8.4 Conclusion

	9 Discussion
	9.1 Delimitations in the Model
	9.2 Prototype Optimization Options
	9.2.1 Networking
	9.2.2 Clearing up the Working Memory
	9.2.3 Flow Features Elaboration

	9.3 Rules Management, Dynamic Load of Rules and Rules Propagation
	9.4 Versioning and Variants Management
	9.5 Participant Management
	9.5.1 Access Control
	9.5.2 Assignment of Tokens

	9.6 Data Synchronization
	9.7 Thread Synchronization and Race Conditions
	9.8 Persistence
	9.9 Network Security
	9.10 Import and Export von "Process Templates"

	10 Conclusion
	A The Rule Package

