
Konzeption und Realisierung einer verteilten
Adressdatenbank im Stil einer

Publish/Subscribe-Architektur zum Austausch
von Patientendaten zwischen autonomen

medizinischen Informationssystemen

Diplomarbeit im Fach Informatik

vorgelegt von

Florian Dominik Rampp

geb. 30.07.1984 in Günzburg

angefertigt am

Department Informatik
Lehrstuhl für Informatik 6

Datenmanagement
Friedrich-Alexander-Universität Erlangen-Nürnberg

Betreuer: Prof. Dr. Richard Lenz
Dipl.-Inf. Christoph Neumann

Beginn der Arbeit: 15.10.2008
Abgabe der Arbeit: 31.03.2009





Erklärung zur Selbständigkeit

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der
angegebenen Quellen angefertigt habe und dass diese Arbeit in gleicher oder ähnlicher Form noch
keiner anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer Prüfungsleistung
angenommen wurde. Alle Ausführungen, die wörtlich oder sinngemäß übernommen wurden,
sind als solche gekennzeichnet.

Der Friedrich-Alexander-Universität Erlangen-Nürnberg, vertreten durch den Lehrstuhl für
Informatik 6 (Datenmanagement), wird für Zwecke der Forschung und Lehre ein einfaches,
kostenloses, zeitlich und örtlich unbeschränktes Nutzungsrecht an den Arbeitsergebnissen der
Diplomarbeit einschließlich etwaiger Schutzrechte und Urheberrechte eingeräumt.

Erlangen, den 31.03.2009
(Florian Dominik Rampp)





Zusammenfassung

Aufgrund des fehlenden Informationsaustausches zwischen Institutionen leidet die medi-
zinische Versorgungskette in Deutschland unter der unzureichenden Verfügbarkeit von pa-
tientenbezogenen Daten. Im Rahmen dieser Diplomarbeit wird eine Lösung vorgestellt, die
Patienteninformationen zwischen autonomen medizinischen Informationssystemen austauscht.
Die drei Phasen des Informationsaustausches umfassen die Bündelung von Informationen die
eingebracht werden sollen, die Rückführung dieser Informationseinheit in die Patientenakte
und die darauf folgende Verteilung der Änderungen an weitere Teilnehmer. Das zu entwerfende
System implementiert eine Publish/Subscribe-Architektur. Die Hauptziele sind der Verzicht auf
eine zentrale Infrastruktur und die Orientierung an der traditionellen, dokumentenorientierten
Arbeitsweise.

Eine Referenzimplementierung zeigt die praktische Umsetzbarkeit des Konzepts. Ein multi-
dimensionaler Systementwurf führt zu Modulen mit einem genau umrissenen Funktionsumfang
und klar definierten Schnittstellen. Aufgrund der Verteilung des Systems werden Kommu-
nikationsprotokolle zur Datenübertragung zwischen Systemknoten benötigt. Dazu wurde eine
Plugin-Architektur entworfen, die die Einbindung von beliebigen Protokollen ermöglicht. Des
Weiteren werden verschiedene Möglichkeiten zur Adressierung von Systemkonten aufgezeigt.
Das System ist unabhängig vom Typ der ausgetauschten Daten, was sich in der Einführung einer
domänenunspezifischen Terminologie widerspiegelt. Als erster, ausgetauschter Informationstyp
wurden Adressdaten ausgewählt, da diese allen Patientenakten gemein sind.





Design and Implementation of a
Distributed Address Database Following
a Publish/Subscribe Architecture to

Share Patient Data Among Autonomous
Healthcare Information Systems

Abstract

Due to the lack of inter-institutional information exchange, the medical supply chain in
Germany suffers from the insufficient availability of patient-related data. In the course of
this thesis, a solution is proposed that shares patient-centric information among autonomous
healthcare information systems. The three phases of information exchange encompass the
bundling of information to contribute, repatriating this information unit into the patient health
record, and subsequently publishing the changes to subscribers. Therefore, the system to be
designed follows a publish/subscribe architecture. The main objectives are the abdication of
any central infrastructure and the adherence to a traditional document-oriented approach.
A reference implementation is provided that proves the feasibility of the overall concept. A

multi-dimensional system design approach creates modules with a distinct scope of work and
well-defined interfaces. Due to the distributed nature of the system, network communication
protocols are required to support data transfer between nodes. Therefore, a plug-in architecture
is designed that allows the integration of bindings to arbitrary protocols. Furthermore, different
types of identifier schemes are used to address accounts. The system is agnostic of the exchanged
information that is reflected by the introduction of a domain-unspecific terminology. As a first
exemplary information type to be exchanged, address data, being common to all patient files,
is chosen.





Contents

1 Introduction 1
1.1 The Current State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Emerging Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Supporting Information Exchange Between Institutions . . . . . . . . . . . . . 3

2 Methods 5

3 Requirements Analysis 7
3.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 The Basic Interaction Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2.1 Contribution and Repatriation Phase . . . . . . . . . . . . . . . . . . . 8
3.2.2 Publication Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 Artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 A Collaborative Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Outline of DEUS 13
4.1 DEUS Nodes vs. DEUS Accounts . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 DEUS Actors and Their Assumed Roles . . . . . . . . . . . . . . . . . . . . . . 14
4.3 DEUS Artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.3.1 The Digital Card . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3.2 Dossier Files and Depository Folders . . . . . . . . . . . . . . . . . . . . 16
4.3.3 Types of Digital Cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.4 The DEUS Contribution-Repatriation-Publication Chain . . . . . . . . . . . . 18
4.4.1 Setup and Teardown of Trust Relationships . . . . . . . . . . . . . . . . 20
4.4.2 Repatriation Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4.3 Publication Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4.4 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4.5 Initial Publication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.5 The Collaborative Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

iii



Contents

4.6 Further Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.6.1 Identifier Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.6.2 Communication Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.6.3 Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Fundamentals 33
5.1 Addressing Schemes and Identifiers . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1.1 URI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.1.2 XRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2 Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3 Instrumented Communication Protocols . . . . . . . . . . . . . . . . . . . . . . 37

5.3.1 REST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3.2 XMPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3.3 JMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 Architectural Overview and Party Information Data Model 43
6.1 DEUS System Design Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Decomposition of DEUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.2.1 Vertical, Horizontal and Lateral Decomposition . . . . . . . . . . . . . . 44
6.2.2 User and Neighbor System Interaction . . . . . . . . . . . . . . . . . . . 44
6.2.3 The DEUS Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2.4 Access to the Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2.5 Soul Subsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.3 The Party Information Data Model . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7 System Design 51
7.1 From Components to OSGi Modules . . . . . . . . . . . . . . . . . . . . . . . . 52
7.2 Domain Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.2.1 Cross-Cutting Model Elements . . . . . . . . . . . . . . . . . . . . . . . 52
7.2.2 Domain Model Elements for Administration of Relationships . . . . . . 54
7.2.3 Dossier and Depository Model Elements . . . . . . . . . . . . . . . . . . 54
7.2.4 Attention Model Elements . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.2.5 The Model Elements of the Lateral Gatekeeper . . . . . . . . . . . . . . 56
7.2.6 The Resulting OSGi Bundle . . . . . . . . . . . . . . . . . . . . . . . . . 56

iv



Contents

7.3 Infrastructure Access Sublayer . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.3.1 Data Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.3.2 Transfer Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.4 Soul Sublayer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.4.1 Lateral Barker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.4.2 Lateral Gatekeeper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.4.3 The Contribution Subsystem . . . . . . . . . . . . . . . . . . . . . . . . 70
7.4.4 The Repatriation Hub Subsystem . . . . . . . . . . . . . . . . . . . . . . 71
7.4.5 The PIF-Governing Subsystem . . . . . . . . . . . . . . . . . . . . . . . 73
7.4.6 The Publication Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.4.7 The Subscription Subsystem . . . . . . . . . . . . . . . . . . . . . . . . 75
7.4.8 The DIF-Governing Subsystem . . . . . . . . . . . . . . . . . . . . . . . 76

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

8 Implementation Issues 79
8.1 Build Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

8.1.1 Maven as Build System . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
8.1.2 DEUS Maven Project Layout . . . . . . . . . . . . . . . . . . . . . . . . 80

8.2 Spring Framework and Spring DM Server . . . . . . . . . . . . . . . . . . . . . 80
8.2.1 Spring Dynamic Modules . . . . . . . . . . . . . . . . . . . . . . . . . . 81
8.2.2 Spring Framework Applied . . . . . . . . . . . . . . . . . . . . . . . . . 81
8.2.3 Spring DM Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

9 Future Work 85
9.1 Implementational Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
9.2 Conceptual Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

9.2.1 Future Work Motivated by the Problem Domain . . . . . . . . . . . . . 87
9.2.2 Future Work Motivated by Technical Issues . . . . . . . . . . . . . . . . 88

10 Conclusion 91

Appendices 95

Bibliography 95

List of Figures 99

v



Contents

List of Abbreviations 101

A An Overview of Maven 105

B DEUS Maven Project 109
B.1 The Folder Structure of the DEUS Maven Project . . . . . . . . . . . . . . . . 109
B.2 The DEUS Root POM File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
B.3 The POM File of the Maven Gatekeeper Submodule . . . . . . . . . . . . . . . 122

vi



1 Introduction

The current state of inter-institutional supply chains in healthcare follows a traditional paper-
based approach. It encompasses several participants including healthcare professionals and
institutions in the primary and secondary care sectors. The increasing number of parties being
involved in patient treatment requires seamless flow of patient-related information. This is
even more critical with the advent of comprehensive, closely meshed teams of physicians and
other accredited partners. Traditional paper-based information exchange reaches its limits
and can’t keep up with the changing requirements. Patient-related data is missing since it is
not available to all treating institutions. Current clinical systems that provide information
interchange are organized around a central infrastructure and thus are only deployed in
hospitals connecting sections of expertise. Even existing region-wide healthcare systems
bridging institutions require federated databases or central context managers. In the course of
this thesis, a solution is presented that supports inter-institutional, cross-organizational flow
of patient-related information. It provides distribution of health records without requiring a
central infrastructure.

1.1 The Current State

The medical supply chain in Germany involves physicians of the primary and the secondary
healthcare sector. While office-based physicians constitute the primary care, the secondary care
encompasses hospitals, pharmacies, and laboratories. Additional participants in the healthcare
sector include health insurance funds and associations of statutory health insurance physicians.
These healthcare sectors instrument Healthcare Information Systems in order to gather and
process patient-related information.
If the current institution cannot provide the needed spectrum of diagnosis and therapeutic

measures, patients are referred to another institution using letters of referral. As a consequence,
responsibility for medical, organizational, financial, and legal liability is delegated. Discharge
letters provide the referring institution with information about diagnosis, significant investi-
gations, medication, etc. concerning the treatment of the patient in the institution he/she
has been referred to. These two examples of information flows traditionally use paper-based
documents. The patient is not necessarily involved in data interchange directly, but may only

1



1 Introduction

serve as surrogate for postal delivery. The described system of information exchange is based
on the assumption of patients trusting in their physicians and physicians trusting in each other.
Another scenario is the advent of treating patients in comprehensive, closely meshed teams

of physicians and accredited partners [RL03]. Especially, chronic diseases, like cancer, diabetes,
and cardiac insufficiencies result in closer collaboration of physicians [LSLG00]. This requires
a comprehensive, long-term exchange of patient-related information bridging institutions and
sections of authority and expertise.

Existing healthcare frameworks for data exchange focus on institutions of the secondary care.
Complex hospitals are provided with protocol standards that support information interchange
between organizational sections. These protocol standards presume a central infrastructure
potentially involving federated databases, transaction monitors, or context managers. An
example is the XDS1 standard from IHE2 that allows for distributed document repositories
[ACC07]. Nonetheless, a central system node is required for registering documents and providing
an index for retrieval. Even existing systems following RHIN3 architectures [WVM01] require a
central infrastructure for providing wide-area information exchange.

1.2 The Emerging Problem

While an increasing number of parties are involved in patient treatment, no comprehensive
system for inter-institutional data exchange is available. The consequence is missing patient-
related information, like discharge letters, not being available to all involved institutions
[Sam04]. This problem is even more critical with the advent of physicians being organized
in inter-institutional, closely meshed teams. A system for providing nation-wide information
exchange without the need for a central infrastructure is currently not available. Lacking such
a platform, comprehensive functional and data integration [LBK07] bridging institutions is out
of reach.
Any solution has to cope with the obstacle of coupling heterogeneous and isolated legacy

systems. They were neither designed for cooperation nor do they support current data
integration standards. Furthermore, introducing a new information exchange platform is always
a trade-off between the retention of local autonomy and enforcing data integration by common
standards.

1 Cross Enterprise Document Sharing
2 Integrating the Healthcare Enterprise
3 Regional Healthcare Information Networks

2



1.3 Supporting Information Exchange Between Institutions

1.3 Supporting Information Exchange Between Institutions

To solve the described problem, a solution is introduced in the course of this thesis that supports
the flow of patient-related information between institutions, be they in primary or secondary
care. This system does not require central infrastructure and, thus, allows for the maintenance
of an institution’s local autonomy. It also supports closely meshed teams distributed over
several institutions and sections of expertise, as elaborated above. The system to be designed
permits the controlled distribution of a patient file to trusted physicians and other institutions
involved in the medical supply chain. Originating in institutional EHRs1 [PB05], information
will be contributed to a patient-centered health record, potentially comprising the entire
medical history. The patient will be the lone authority over his/her data and, thus, governs the
information exchange by allowing healthcare parties to subscribe to subsets of the patient file.
Furthermore, the system to be designed will foster data integration between institutions

by offering a facility for transporting HL72 CDA3 documents. CDA provides a standard for
XML4-structured clinical documents with well-defined encoding, structure, and semantics. They
are persistent in nature and contain human-readable as well as optional structured parts to
be processed by software. The structured parts instrument existing standards for medical
ontologies, like SNOMED5 or LOINC6, to represent medical concepts. CDA does not require a
specific way of transporting the documents. Besides the solution presented in this thesis, other
transportation facilities are HL7 v2 or v3 messages, as well as instrumenting email, or FTP7.

While being critical to data protection and privacy, the legal implications accompanying the
solution are out of scope of this thesis.

1 Electronical Health Records
2 Health Level 7
3 Clinical Document Architecture
4 Extended Markup Language
5 Systematized Nomenclature of Medicine
6 Logical Observation Identifiers Names and Codes
7 File Transfer Protocol

3





2 Methods

This chapter provides an overview of the design process and applied methods used in shaping
and implementing the functionality of the system to design. The current state and the emerging
problem of inter-institutional healthcare supply chains have been explained in the introduction.
A solution is proposed that fulfills well-defined objectives described in chapter 3. An initial
overview of the functionality of the system to be designed is obtained by following a basic
interaction scenario. Several phases and artifacts are distinguished, while an additional scenario
is introduced which presumes a closer collaboration of physicians in expert teams.

These basic assumptions about the extent and functionality of the system to be designed are
elaborated on in depth in chapter 4. The proposed solution to the problems and requirements
outlined in the previous chapter is a system called DEUS. It is agnostic of the type of data
exchanged which is implemented by introducing a level of abstraction. Subsequently, different
actors and roles are established that reflect this abstraction. The basic unit of information
exchange is the Digital Card which will be introduced together with other artifacts of DEUS.
The basic interaction scenario is elaborated by closely examining the sequence of phases and
steps that are needed for information interchange. Trust relationships and semantics associated
with contributing and publishing information are explained. Further requirements of DEUS

include an identifier scheme for accounts, communication protocols for inter-node information
exchange, and authentication. A use case analysis helped in gathering the requirements and
the basic outline of DEUS. By taking the point of view of a user in the different roles, such as a
physician or a patient, necessary use cases were found.
Since DEUS enables information exchange between medical healthcare information systems

running on different servers, the system is distributed over many nodes. Therefore, the basic
principles of a distributed system, including communication, addressing, system identification,
and service discovery need to be taken into account. An overview of some fundamentals of
distributed system design is given in chapter 5. Two alternatives for identifiers together with
a method for service and metadata discovery is described. After adopting the principles of
protocol design, it was decided to keep the system independent of a specific communication
protocol. Rather, a general protocol is devised adhering to a top-down approach of deriving

5



2 Methods

functionality from use cases. Various bindings of this protocol to concrete communication
protocols are introduced and evaluated.

UML1 and a multidimensional system modeling approach are used to decompose DEUS into
subsystems, tiers, and sublayers and thus obtain modules with a well-defined interface and
scope of operation. These design considerations resulted in the system architecture described
in chapter 6. As an example of data to be exchanged by instrumenting DEUS, address and
contact data is taken, since this is a common subset each health record contains. A data model
for address and contact data was created using ERDs2 that is influenced by the address data
standard vCard. This modelling resulted in a data model, encompassing vCard and other
contact data standards.
The scope of work and the functionality of each of the system modules is explained in

chapter 7. Here, the details of their responsibilities and the interfaces they offer to other
modules are described. A component model called OSGi3, which offers life cycle support for
each module, is used to implement the components. The use cases found in the requirements
analysis are realized by interaction of certain modules. This collaboration and further design
issues like inter-module dependencies, design patterns, and module versioning are explained.

To ease development, several frameworks and technologies are used including tools supporting
the build cycle and the deployment phase. The runtime environment has to provide a container
for installing and executing the OSGi components. These implementation topics are covered in
chapter 8.

On designing and developing DEUS, several points of extensibility were discovered. Chapter 9
explains how the scope of the system can be enlarged by implementing omitted functionality
and elaborating advanced concepts. Future work can build upon the efforts described in this
thesis and the existing DEUS reference implementation.

1 Unified Modelling Language
2 Entity-Relationship Diagrams
3 Open Services Gateway Initiative

6



3 Requirements Analysis

In the course of this thesis, a system will be designed that provides inter-institutional, interdis-
ciplinary distribution of patient-related data. This system should fulfill some requirements,
with the most important being the retention of local autonomy by the abdication of any central
infrastructure and integration of existing, heterogeneous systems. It furthermore should adhere
to the document-oriented approach currently found in healthcare supply chains. Another
objective is the empowerment of the patient to be the lone sovereign of his/her data and thus
control the distribution of it. A basic interaction scenario is outlined that involves contribution
of patient-related data to a health record and subsequent publication of this information to
interested parties. A second scenario introduces a collaborative approach of treating patients in
closely meshed, comprehensive teams of physicians. In collaborating teams, even more than in
classical cooperation, a seamless flow of information among the involved institutions is essential.

3.1 Objectives

The proposed solution should adhere to the main objectives elaborated in this section. No
central mediator should require the institutions to give up their local autonomy in favor of a
central hegemony. This includes the abdication of any kind of central infrastructure like joint
databases, transaction monitors, or central context managers.

Since physicians are accustomed to a document-oriented working practice, the system should
also reflect this approach in its operation and basic data model. Self-contained and viable
information units constitute documents adhering to this principle. Their viability results from
contained context information [LBK07], such as the author, subject, labels, and descriptions
that uniquely identify the document. This furthermore involves the incorporation of medical
concepts inside documents rather than in the interface of a system. Since frequent changes of
system interfaces entail compatibility, operation, and deployment problems, interfaces should
be kept simple and lightweight. This approach follows the deferred design principle [Pat03]
of evolutionary systems by not freezing design decisions about domain semantics into a fixed
interface. Due to the continuous adaption of medical models and terminologies to current
knowledge, a document-oriented approach using lightweight interfaces is preferred over a service-
oriented solution with semantically rich interfaces. In comparison to the traditional approach

7



3 Requirements Analysis

of rather comprehensive and large documents, the proposed solution favors the exchange of
smaller, viable units of information. Smaller information units improve the structure of health
records by providing a higher selectivity in retrieval and display.

Furthermore, a patient-centric approach should reflect the medical supply chain in Germany
with its focus on the patient. The patient should maintain control of the exchanged data and,
thus, is empowered with the responsibility of deciding which information is shared with whom.
While this change of notion appears quite radical, ‘Patient Empowerment’ is an upcoming issue
in eHealth [eHe03]. If a patient is unable to govern information exchange, the sovereignty over
his/her data can be delegated to a legitimate other party, be it an institution or a person.
Existing healthcare information systems are heterogeneous considering the used software

and platform. In order to be as integrative and compatible as possible, the solution should not
be coupled to a specific platform. Vendor and technology lock-in is avoided by keeping the
architecture and the application core independent of any used remote invocation technology,
storage mechanism, or middleware frameworks.

3.2 The Basic Interaction Scenario

The basic interaction scenario is depicted in figure 3.1 involving three main actors. A person
named ‘Alice’, assuming the role of Patient visits a physician, named ‘Dr. Higgins’1, taking on
the role of Treatment Provider here. The information gathered during her visit at Dr. Higgins
has to be shared among other people including the healthcare professional ‘Prof. Bob’, assuming
the role of Audience Party. The three introduced top level user roles embody the main actors
of the interaction scenario. The required trust connections between the different actors are
being thought of as established earlier.

3.2.1 Contribution and Repatriation Phase

The information unit, containing data about the treatment of Alice, is bundled by the HCIS2

of Dr. Higgins. It contains, for example, a diagnostic finding, clinical evidence, a diagnosis, a
therapeutic measure, an order, or a prescription. The process of subsequently importing the
unit into the HCIS’ local system extension is called Contribution. Afterwards, the contributed
unit is signed, using cryptographic methods, and transferred to the patient’s system account.
Alice, as being the concerned person and the sovereign of information interchange, then decides

1 The name is a homage to the ‘Higgins Project’, that introduced the notion of an Information Card as
self-contained, viable document representing a part of a party’s identity.

2 Healthcare Information System

8



3.2 The Basic Interaction Scenario

Figure 3.1: The basic interaction scenario around contribution, repatriation and publication

whether the contributed information unit is assimilated into her health record. The process of
transferring a unit of information to the patient system and the successive decision about the
acceptance of it is called Repatriation.

3.2.2 Publication Phase

Following the assimilation of the new information, the changes to the health record of the patient
are published to the subscribers of Alice’s patient file, among them Prof. Bob. This phase is
called Publication. While only a single unit of information, being viable and self-contained
as previously described, is contributed and subsequently assimilated into the patient’s health
record, this may trigger a list of changes to the patient file. It depends on the semantics
of the assimilation how contributed information changes the existing data. Thus, the act
of Publication does not only transfer the newly contributed information unit, but a more
sophisticated data structure, called a patch, reflecting the change in the state of the health
record.
Dr. Bob collects the received information about Alice in a local patient file. This local

copy represents a replicated version of only a subset of the patient file, because not every
contributed information unit necessarily has to be published to all subscribers. So, the process
of publication constitutes an unidirectional synchronization of a subset of the patient’s health
record with the replicated version of the subscribers. Existing HCISs can subsequently access
this local copy and retrieve information from it to be used inside the HCIS.

9



3 Requirements Analysis

3.3 Artifacts

The health record of Alice constitutes the subject of interest and is named Personal Patient
File (PPF). It consists of a list of information units representing the medical history of the
patient as far as it is known to the system. The subscriber side replication of the health record
contains a subset of the information units of the Personal Patient File and is called Foreign
Patient File (FPF). A healthcare professional in the role of Audience Party will require access
to patient related information of more than one patient. Thus, Foreign Patient Files of multiple
patients are collected in a depository called Distributed Patient Folder (DPF). The described
artifacts and their relations are visualized in figure 3.2.

3

2

Alice

1
1

Information 

Unit

DC1

DC1

Figure 3.2: The relationship of the artifacts Personal Patient File, Foreign Patient File and
Distributed Patient Folder

3.4 A Collaborative Scenario

The introduced basic interaction scenario constitutes a cooperative approach rather than a
collaborative one. In a cooperative environment, participants are organizationally independent,
the degree of interdependence is low. While in a collaborative scenario organizational inde-
pendence is kept, the degree of work-product interdependence is high. The collective results
obtained by a team of physicians and accredited partners would be impossible when working
alone.
An example for a collaborative scenario is a breast cancer treatment center with closely

meshed teams of oncologists, radiologists, post-operative care, and other healthcare professionals.
Here, patient interaction is counterproductive and information should be exchanged unfiltered
among the team without a patient to govern information interchange. The system to be
designed should also support this collaborative scenario by providing means of bundling actors
into teams and bypassing decision processes involving the patient.

10



3.5 Conclusion

3.5 Conclusion

As explained in the previous chapter, there is a necessity for a comprehensive solution to
the problem of inter-institutional information exchange of patient-related data. Therefore, a
system should be designed, that enables heterogeneous Healthcare Information Systems to
communicate and exchange information, without the need for a central mediating instance.
Adhering to a patient-centric design guarantees the sovereignty of the patient over his/her
data and its distribution. The exchanged artifacts should constitute self-contained, viable
documents following the document-oriented approach to ease the adoption by mirroring familiar
working practices. A basic interaction scenario encompassing three different types of actors was
introduced, as well as several artifacts of information exchange. Another scenario constitutes a
collaborative approach of treating patients in closely meshed teams of healthcare professionals.
Both scenarios should be supported by the designed system.

11





4 Outline of DEUS

By introducing DEUS, a solution to the emerging problems explained in chapter 1 is proposed.
DEUS is an acronym for Distributed Electronic Patient File Update System. The system fulfills
the described requirements by adhering to patient-centric and document-oriented principles.
The classic approach of publish-subscribe systems is extended by the notion of a mediator,
incorporated by the patient, governing the distribution of medical information related to
him/her. DEUS employs a distributed architecture, instrumenting peer-to-peer communication
to avoid the usage of a central infrastructure. Furthermore, the system is domain-unspecific
and agnostic of the content of documents leading to the ability to share arbitrary data using
the developed information distribution architecture. To reflect this generic approach, a layer of
abstraction is introduced that provides a generic, domain-unspecific terminology. This approach
fosters system evolution by adhering to the ‘deferred design principle’ [Pat03]. It furthermore
reflects a layering style that follows the layered approach of system evolution in [LBK07].

In this chapter, a basic distinction is made between DEUS accounts and the nodes they reside
on. These accounts are associated with actors that assume domain-unspecific distribution roles.
The introduced actors and their assumed roles no more reflect a medical domain. Artifacts
being involved in information exchange are elaborated by introducing a domain-independent
notation as well.

The basic interaction scenario introduced in section 3.2 is detailed further by describing the
setup and teardown of trust relationships between actors. Semantics concerning the assimilation
of contributed information units into the Personal Patient File are elaborated. The subsequent
publication of the changed state of the health record involves principles of synchronization.
A group-based approach for choosing the subscribers and filtering the data to be published
is presented below. Different possibilities are identified to initially publish historic data after
a subscription is established. Furthermore, DEUS is also able to support the collaboration
scenario of section 3.4. The chapter closes with an overview of some technical requirements
concerning identification of accounts, used communication protocols, and authentication.

13



4 Outline of DEUS

4.1 DEUS Nodes vs. DEUS Accounts

Existing HCIS with an installed DEUS extension or independent servers offering DEUS functional-
ity are called DEUS nodes. Since DEUS is multitenant, each node may host an arbitrary number
of DEUS accounts. Each actor participating in information exchange has its own account, which
is uniquely identified by a user ID. While functionality can be restricted on a per-account basis
to reflect the scope of work of the different actors, each node nonetheless supports the full
functionality of DEUS.
For setting up an account, a patient may freely choose a DEUS node. This node may either

be self-administrated or offered by a trusted third party hosting DEUS accounts on behalf of
the user. While the latter is probably the more prevalent scenario, DEUS does not enforce
this decision. Examples of third parties that offer patients to host patient accounts might be
hospitals, the patient’s general practitioner, or health insurance companies.

Interaction between DEUS accounts may result in communication over network links depending
on whether the accounts reside on the same node. Instrumented protocols for this communication
will be elaborated later.

4.2 DEUS Actors and Their Assumed Roles

The requirement analysis revealed three healthcare actors participating in DEUS. The first
actor is the Treatment Provider, that contributes information to the health record of a patient.
The second actor involved in DEUS is the Patient, being the person concerned of contributed
information and governing the distribution of his/her data. If another physician requires read
access to the health record of a patients, the physician will subscribe to the patient file and
thus become the Audience Party actor.

Domain

Actors

Distribution 

Roles

Information

Provider

Concerned

Person

Information

Consumer

Functional 

Roles Author

<<non-DEUS>>

Repatriation

Authority

Subscriber

Treatment

Provider
Patient

Audience

Party

Contributor Publisher Retriever

primary 

distribution role

optional 

distribution role

Figure 4.1: The three DEUS actors and their roles in a distribution scenario.

14



4.3 DEUS Artifacts

Since the DEUS architecture is domain-unspecific, the terminology used should also be domain-
unspecific. Thus, each of the introduced actors assumes by its DEUS account a distribution role
reflecting a primary interest in the overall distribution scenario. This is depicted by the vertical
lines in figure 4.1. The domain-unspecific role of Information Provider contributes information
about a Concerned Person, who decides about sharing this contribution with Information
Consumers.

Besides a primary role, each actor can potentially assume, by its DEUS account, each
distribution role as it is visualized by the dashed lines. For example, the patient can act as
Information Provider about himself/herself, contributing information like allergies or legacy
paper document scans. Similarly, a treatment provider can use its DEUS account in the role of
a Concerned Person to provide and publish business card information or consultation hours
information. Employing DEUS in another domain involves identifying the main actors using
domain-specific names. It is possible to restrict which distribution roles can be assumed by a
healthcare actor.

Certain responsibilities can be deduced from distribution roles forming functional roles. The
Information Provider acts as author of the information, which takes place inside the HCIS and
is not part of DEUS. The Information Provider acts as contributor by bundling an information
unit, signing it and handing it over to the actual DEUS account. The Concerned Person acts as
repatriation authority by deciding about the validity of a repatriated information unit. The
Concerned Person acts as publisher by applying the selection of subscribers and performing the
publication transfer. The Information Consumer acts as subscriber by establishing subscriptions
to the account of the Concerned Person and by accepting published information units. Finally,
the Information Consumer acts as retriever by accessing the information pool. Each functional
role will be further detailed in chapter 7 when the subsystems related to each role will be
introduced.

4.3 DEUS Artifacts

An information unit, as mentioned in the previous chapter, is formalized in the DEUS context
by introducing the concept of a Digital Card incorporating a viable information unit. The
second type of artifact involved in information exchange are dossier files including the Personal
Patient File and the Foreign Patient File. They will be renamed to reflect the domain-unspecific
orientation of DEUS.

15



4 Outline of DEUS

4.3.1 The Digital Card

Following the document-oriented principle, the artifacts of data interchange need to be self-
contained and viable. DEUS introduces the term Digital Card incorporating the notion of the
information unit as used in the previous chapter1. Digital Cards become the subject of interest
of information exchange and constitute the smallest piece of patient-related data.

Their viability is reflected by a composite primary key, uniquely identifying each Digital Card:
Since each Digital Card is created by a single Information Provider, the ID of the Information
Provider is part of the primary key of a Digital Card. Each Digital Card contains information
related to a single Concerned Person, thus, his/her ID is included in the primary key. Due
to the possibility of an Information Provider contributing multiple Digital Cards about a
Concerned Person, the third part of the primary key of a Digital Card is a discriminator chosen
by the Information Provider. This context information semantically associates the Digital Card
with actors and thus adheres to the notion of a context as described in [LBK07]. The model of
the introduced Digital Card is depicted in the ERD in figure 4.2.
Concluding, a Digital Card represents a document as required by the document-oriented

approach, although the intended granularity is a more fine-grained one than the one experienced
in a paper-based environment. By carrying its own context information, a Digital Card is
viable and can exist independently of the system it stems from.

concerns

Digital Card

contributed by

contributor

provided

discriminator ID

Figure 4.2: The data model of the introduced Digital Card

4.3.2 Dossier Files and Depository Folders

DEUS is agnostic of the problem domain by not being aware of the content of the transferred
Digital Cards, which is also reflected by introducing generic distribution roles in section 4.2.
This principle also drives a renaming of the artifacts introduced in section 3.3 by replacing the
term ‘Patient’ with ‘Information’.

1 The Digital Card metaphor has been inspired by the Higgins project [Ecl08] with its Information Cards as
the foundation of an open identity framework.

16



4.3 DEUS Artifacts

Thus, a patient’s health record, referred to as Personal Patient File in the previous chapter
is renamed to Personal Information File. The replicated version of it on the subscriber side is
called Foreign Information File in the following. These two artifacts are united under the term
dossier files. Furthermore, the Distributed Patient Folder containing a list of Foreign Patient
Files is renamed to Distributed Information Folder which is also referred to as encompassing
depository.

The Personal Information File is uniquely determined by the ID of the user, that is associated
with the information inside the record, who subsequently is the owner of the record. Since one
user only owns a single Personal Information File, no further discriminating key is needed for
this dossier artifact. It consists of a list of Digital Cards, which is outlined in figure 4.3. In the
following, the key attributes of a Digital Card, depicted in figure 4.2, are omitted.

containsowns Digital CardPersonal Information FileUser ID

ID

Figure 4.3: The model of the Personal Information File

Since the Foreign Information File is a replicate of the Personal Information File of a
Concerned Person being held at the Information Consumer side, it also consists of a list of
Digital Cards. It has a composite primary key, with the first component being the ID of the
Concerned Person that is represented in the Foreign Information File. The second component
is the primary key of the Distributed Information Folder that the Foreign Information File is
contained in. The Distributed Information Folder in turn is identified by the user in the role of
Information Consumer who owns it. Figure 4.4 outlines the model of the Foreign Information
File and the Distributed Information Folder.
The Foreign Information File does not necessarily contain all the Digital Cards of the

Personal Information File it mirrors but rather forms a subset of it. This subset is achieved
by the Concerned Person selecting the subscribers to be notified of an update of the Personal
Information File during publication. Thus, not all subscribers of the Personal Information File
receive all Digital Cards. More on this can be found in section 4.4.3.

4.3.3 Types of Digital Cards

A Digital Card is an abstract concept providing only a container for arbitrary content to be
included. Concrete types of Digital Cards can be derived that specify the type of embedded
information. As described in section 1.3, a way to foster data integration in healthcare is the

17



4 Outline of DEUS

has

1

1

contains N1 contains N1 Digital Card

is
represented

in

N

1User ID

ID

Distributed 
Information 

Folder

Foreign 
Information 

File

Figure 4.4: The model of the Foreign Information File and the Distributed Information Folder

interchange of documents conforming to the HL7 CDA standard. Therefore, DEUS is intended
to provide a new transport infrastructure for CDA documents by exchanging Digital Cards
adhering to this specification.
The focus of this thesis is on the design and architecture of a domain-unspecific system for

information interchange and only to a lesser extent on the concrete type and semantics of
exchanged patient-related data. Therefore, the specification of a Digital Card type containing
complex CDA documents was deferred to the future. Instead, an exemplary type of Digital
Card allows the incorporation of patient master data occurring in every health record. Existing
standards for contact and address data are embraced with the most important and widespread
one being vCard [DH98]. However, vCard offers no comprehensive data model, but only a list
of attributes. Hence, a model for master data was created that allows for exporting address
data confirming to the vCard standard. This data model is presented in section 6.3.

4.4 The DEUS Contribution-Repatriation-Publication Chain

In section 3.2, the flow of information in a basic interaction scenario was described. In the
DEUS context, this information flow is called Contribution-Repatriation-Publication Chain and
is outlined in figure 4.5.

The contribution phase of the chain involves bundling a self-contained information unit into
a Digital Card, signing and importing it into DEUS. In the repatriation phase, this Digital
Card is transferred to the account of the Concerned Person and the decision whether to accept
the new information is posed to the patient. This transfer may involve communication over a

18



4.4 The DEUS Contribution-Repatriation-Publication Chain

Publication phase

Repatriation phaseContribution phase

<<information provider>>
HCIS

<<information provider>>
DEUS node

information 
unit

bundling

Contribution:
Digital Card

import

Repatriation:
transfer

Repatriation:
assimilation into 

Personal 
Information File

Subscriber
selection

Publication
transfer

merging into 
Foreign 

Information File

Selection that 
compasses
self-reliance
and viability

Import as Digital 
Card into the 
DEUS system

One-to-one 
transfer of the 
Digital Card

Acceptance 
decision by
concerned person

One-to-many 
transfer of the 
patch

Notice of FIF 
update

<<concerned person>>
DEUS nodeNetwork

Network <<information consumer>>
DEUS node

<<concerned person>>
DEUS node

Publication 
filtering

Figure 4.5: The DEUS Contribution-Repatriation-Publication Chain

network that follows the one-to-one principle. The prior setup of a trust relationship between
the Information Provider and the Concerned Person is elaborated on in section 4.4.1.2. If
the patient acknowledges the repatriated Digital Card, it is assimilated into the Personal
Information File. Different strategies for handling the merging semantics are described in
section 4.4.2.
Subsequently, the new state of the dossier is announced in the publication phase. In sec-

tion 4.4.3, the selection of subscribers who receive the change is explained. An unidirectional
synchronization updates the local copy of each selected subscriber. This is further elaborated
on in section 4.4.4. The potentially involved network communication follows a one-to-many
paradigm, thus posing other requirements to the underlying network protocol than the repatri-
ation transfer described above. The prior setup of a trust relationship between the Concerned
Person and the Information Consumer is described in section 4.4.1.3.

19



4 Outline of DEUS

4.4.1 Setup and Teardown of Trust Relationships

Before any communication between DEUS actors occurs, trust relationships for the repatriation
and the publication phase have to be built up. Prior to repatriating a Digital Card, a repatriation
trust relationship between the Information Provider and the Concerned Person is established.
Prior to publishing changes, a publication trust relationship between the Concerned Person and
the Information Consumer is built up. Using the notion of a ‘trust relationship’ reflects its
conceptual nature. In the following, the term ‘trust connection’ is used synonymously. However,
these connections don’t establish low level communication channels but are rather used to avoid
authentication prior to each subsequent repatriation or publication of a Digital Card.

4.4.1.1 Classification of User Accounts in the Context of Trust Relationships

Each DEUS user owns an account that assumes different distribution roles and is identified
by a unique ID. From these distribution roles functional roles were deduced1. While trust
relationships are conceptually established between distribution roles, the logical view of a
relationship connects two accounts assuming functional roles.

In the following, establishing trust relationships is regarded from the perspective of a single
user account that is classified as ‘hosted’. While this account manages trust relationship
artifacts, other accounts are only referenced by their user ID and thus classified as ‘peers’. This
incorporates the first dimension of a two-dimensional classification of user accounts outlined
in figure 4.6 where an account is disjointly classified as peer or hosted account. The second
categorization reflects the decomposition into functional roles. Since an account can potentially
assume multiple functional roles, the resulting specialization is overlapping. In the following
consideration about trust relationships, the two classifications of a user account are reflected
by the name of an account entity.

4.4.1.2 Repatriation Relationship

A repatriation relationship is conceptually established between an Information Provider and a
Concerned Person for authenticating the source of a repatriation. Logically, the relationship
is built up between two accounts assuming the functional roles Contributor and Repatriation
Authority. This is outlined by details of figure 4.1 being displayed in figure 4.7.

Assuming the functional role Repatriation Authority, a hosted DEUS account manages a list
of authenticated contributors outlined in figure 4.8. An entry in this list contains describing

1 See section 4.2 for more about the relation between distribution and functional roles.

20



4.4 The DEUS Contribution-Repatriation-Publication Chain

ID

1 1User ID identifies

d

Hosted 
Account

Peer Account

o

Contributor 
Account

Repatriation 
Authority Acc.

Publisher 
Account

Subscriber 
Account

User Account

Figure 4.6: The two-dimensional classification of a user account

Figure 4.7: A repatriation relationship connecting the functional roles Contributor and Repatria-
tion Authority

metadata, including the full name and gender of the contributor. This is needed to display list
entries, containing the contributor’s name, while the gender is used to adapt grammar. If a
PKI1 is used in order to certify communication endpoints and actors, this list will contain any
attributes related to the PKI. The primary key of each list entry is composed of the primary
key of the list and the primary key of a peer user account taking the role of Contributor.
If a Digital Card is received in the repatriation phase, it is checked whether the originator

of the Digital Card is contained in the list of contributors. Two different trust models can
be thought of: The more restrictive one drops all Digital Cards received by contributors
not included in the list. However, if a repatriation relationship is established, a decision
is presented to the user whether to accept the repatriated Digital Card. The second, less
restrictive approach would automatically accept Digital Cards from the listed contributors and
only display a decision to the user if the originator is unknown. Establishing repatriation trust

1 Public Key Infrastructure

21



4 Outline of DEUS

includes

contains

Hosted Repatriation 
Authority Account

referenced in

Peer Contributor 
Account

contributor metadata

fullname gender

Figure 4.8: The list of contributors and their entries

connections thus prevents malicious parties from injecting false information into the Personal
Information File without being noticed by the Concerned Person.
Furthermore, for not requiring the Information Provider to wait for the user accepting the

repatriation relationship request, the contributed Digital Card may be piggy-backed onto the
request. On confirmation of the trust connection by the Concerned Person, the Digital Card is
instantly processed according to the chosen trust model.
As a first approach, the latter trust model is implemented. Establishing repatriation

relationships is not provided, so that contributed Digital Cards result in always being displayed
to the Concerned Person for decision.

4.4.1.3 Publication Relationship

A publication relationship is conceptually built between a Concerned Person and an Information
Consumer while it logically connects two accounts assuming the functional roles Publisher and
Subscriber. This is outlined by details of figure 4.1 being displayed in figure 4.9. While it
coincides with ‘subscription’, the term ‘publication relationship’ is preferred in the following.
Establishing or terminating a publication relationship can be initiated by either party. The

used terminology around the establishment and termination of publication connections is
outlined in figure 4.10. Different use case names entail different conceptual messages to be sent
to the communication counterpart. Messages for connection establishment are pleas requiring
a decision. Different verbs are chosen for positively or negatively deciding on pleas on the
publisher and subscriber side in order to clearly distinguish the two use cases.

If an Information Consumer requires access to the Personal Information File of a Concerned
Person, he/she subscribes to a Publisher. Subsequently, a plea is displayed to the user of the
Publisher account which requires the user to either grant or deny the request. The decision is
sent to the Subscriber and in case the plea is granted, the connection is established on both

22



4.4 The DEUS Contribution-Repatriation-Publication Chain

Figure 4.9: A publication relationship connecting the functional roles Publisher and Subscriber

publisher 

initiated

subscriber 

initiated

invite 

subscriber

subscribe to 

publisher

subscription 

offer

subscription 

request

subscription 

cancel

publisher 

initiated

subscriber 

initiated

confirm/repel grant/deny

cancel 

subscription

unsubscribe 

from publisher

unsubscribe

Figure 4.10: Terminology around the establishment and termination of pub/sub connections

sides. This involves adding the Subscriber to the list of subscribers on the Publisher and adding
the Publisher to the list of publishers on the Subscriber side. Using the first list, outlined in
figure 4.11, a Publisher knows whom to send updates of the Personal Information File to. The
second artifact, outlined in figure 4.12, is used to whitelist incoming Personal Information File
changes to only accept update messages from Publishers, to whom the user is subscribed to.
Both lists are identified by the primary key of the account they are hosted with. Any list entry
contains describing metadata of the referenced user account. An entry is identified by the list
it is contained in and by the primary key of the peer user account it represents.
If the Concerned Person wants an Information Consumer to receive updates of his/her

Personal Information File, he/she initiates a connection by inviting a Subscriber. Subsequently,
a plea is displayed to the user of the Subscriber account, which requires the user to either

23



4 Outline of DEUS

includes

contains

referenced in

subscriber metadata

fullname gender

Figure 4.11: The list of subscribers

includes

contains

referenced in

publisher metadata

fullname gender

Figure 4.12: The list of publishers

confirm or repel the offer. The decision is sent to the Publisher and in case the plea is confirmed,
the connection is established as described above.

In parallel to establishing a connection, termination can be initiated by either the Subscriber
or the Publisher side. If an Information Consumer no longer requires access to the Personal
Information File of a Concerned Person, he/she unsubscribes from the Publisher. Subsequently,
a message is displayed to the user of the Publisher account, which notifies the user of the
termination of the subscription relationship. The Subscriber is removed from the list of
subscribers on the Publisher side as well as the Publisher is removed from the list of publishers
on the subscriber side. Furthermore, the Foreign Information File related to the Concerned
Person, assuming the Publisher role, is removed on Subscriber side.
If a Concerned Person decides to exclude an Information Consumer from future updates,

and furthermore, demands the deletion of the Foreign Information File, he/she cancels the
publication relationship. Subsequently, a message is displayed to the user of the Subscriber
account, which notifies the user of the termination of the publication connection and the
deletion of the Foreign Information File. The connection is torn down as described above.

24



4.4 The DEUS Contribution-Repatriation-Publication Chain

4.4.2 Repatriation Semantics

If a new Digital Card is contributed by an Information Provider, it is transferred to the
Concerned Person and a plea for accepting this Digital Card is displayed to the user. If the
user accepts the repatriated Digital Card, it has to be added to the user’s Personal Information
File. Several strategies can be applied to assimilate the contributed Digital Card.

Associating Digital Cards with others allows for enriching the Personal Information File with
links between Digital Cards carrying distinct semantic information. IHE XDS therefore defines
document relationships [ACC07, 10.4.10.2]. Different types of relationships associate documents
with folders and XDS submission sets and furthermore provide support for versioning. The
latter option allows to mark a new document as an extension of another one (association type
APND), as a replacement (association type RPLC), or as a transformation (association type
XFRM or XFRM_RPLC).

Following this model, an assimilation strategy may create links between existing Digital
Cards and new ones. Thus, adding a repatriated Digital Card to the Personal Information
File results in potential changes not necessarily limited to appending a single Digital Card,
but rather encompassing larger parts of the Personal Information File. These changes are
incorporated in a patch1 that manifests the difference between the old and the new state of the
Personal Information File. To automate merging of new Digital Cards, extended knowledge
about the content including status information, existing ontologies classifying contained data,
or describing attributes is required.

Currently, DEUS neither supports any associations between Digital Cards nor has knowledge
about their content. Thus the repatriation semantics narrow down to assimilation strategies
that simply append a new Digital Card to the Personal Information File. If there is an existing
Digital Card with the same primary key as the contributed one, an exception is thrown.

4.4.3 Publication Filtering

One issue in the publication phase is the filtering of new information that should be sent
to the subscribers. Obeying the principle of minimal knowledge, each subscriber should
only receive required information. Since publishing new information to all subscribers of the
Personal Information File contradicts this principle, a filtering mechanism should be employed.
Nonetheless, Digital Cards are always shared as a whole and not filtered internally since the
inner structure is not necessarily known to the system. Furthermore, changing or filtering the

1 The notion of a patch originates from the Unix diff and patch tools.

25



4 Outline of DEUS

content of a Digital Card would invalidate the existing signature issued by the Information
Provider.

Resulting from the collaborative scenario described in section 3.4, DEUS should support the
creation of groups of subscribers. Thus, filtering is no more applied subscriber-individually
but rather for a group, potentially only encompassing a single subscriber. The allocation to a
subscriber group can be demanded by an Information Consumer during subscription request.
The patient decides about this demand and subsequently associates the subscriber with one or
more subscription groups. However, the current implementation of DEUS does not support
groups of subscribers.

Filtering rules associate a repatriated Digital Card, being classified by its contained context,
with subscriber groups to which the Digital Card is published. Two different approaches for
this are known from existing publish/subscribe-systems: channel-based vs. content-based
[EFGK03].

The channel-based subscription scheme, also known as topic-based, provides channels, being
identified by a keyword or ‘topic’. Publication to a channel involves broadcasting the event to all
subscribers of this channel. Extensions of this mechanism include a hierarchical organization of
the keywords using containment relationships. Furthermore, the use of wildcards supports the
subscription to a collection of channels. In the DEUS context, this would require a predefined
hierarchy of keywords which provide a classification of the content of repatriated Digital Cards.
On accepting a Digital Card, it is classified according to the hierarchy and published to the
subscribers that subscribed to this channel. Subscriber groups as mentioned above can be
realized by a topic-based subscription scheme.
In contrast, the content-based subscription scheme, also known as property-based, uses the

actual content of an event for classification. This may include any internal attributes of data
structures as well as associated metadata. Filters following a name-value-operator syntax
may be specified to subscribe to selected events. Logical operations may connect filters to
form composite ones. In the DEUS context, this would allow repatriated Digital Cards to be
published after acceptance without the user being involved in classification. This either requires
a common set of attributes accompanying each Digital Card or the definition of executable
predicate objects. These are defined by the Concerned Person and associated with subscriber
groups. For each repatriated Digital Card the predicate objects are applied to it, in order to
check if the Digital Card should be published to this subscriber group.
The current state of the DEUS system does not involve any publication filtering but rather

distributes incoming Digital Cards to all subscribers in the same way. Implementing the
sketched ideas requires more conceptual work on what a subscriber group is, who knows of

26



4.5 The Collaborative Scenario

subscriber groups existing on different accounts, and how a classification of incoming Digital
Cards can be achieved.

4.4.4 Synchronization

Assimilating a repatriated Digital Card into the Personal Information File results in a patch
as described above. This patch potentially incorporates changes of the Personal Information
File not limited to a single Digital Card but encompassing larger parts of it. These changes
need to be sent to the Information Consumers which constitutes a one-way synchronization in
order to keep consistency of the Foreign Information Files. This issue is closely connected to
replication techniques used in distributed systems and is elaborated on in [Len97]. Replication
is furthermore only guaranteed, if the transfer mechanism provides guaranteed delivery [HW03,
p. 122].
As elaborated in section 4.4.2, the current implementation just appends repatriated Digital

Cards to the Personal Information File. Thus, a patch only manifests the addition of a single
Digital Card which confines the synchronization to a publication of the newly added Digital
Card.

4.4.5 Initial Publication

After a pub/sub relationship is established, an initial publication can be accomplished to
send historic Digital Cards to the new Information Consumer. A decision needs to be made
about which Digital Cards of the Personal Information File are encompassed in this initial
publication. One strategy requires the user to once select a set of Digital Cards that are initially
published to each new subscriber. This may, for example, include Digital Cards containing
master data and basic medical information like allergies. Another option would be to require
the Concerned Person to individually select the Digital Cards to initially publish for each
established publication relationship. If the subscriber is added to a publication group after
connection setup, a third option would be to automatically publish all Digital Cards formerly
sent to this group. This involves tracking of the Digital Cards published to each publication
group. The current implementation of DEUS does not initially publish anything at all after
setup of a publication relationship.

4.5 The Collaborative Scenario

The collaborative scenario described in section 3.4 can also be supported by DEUS. Since
patient interaction should be dropped here, the account of the Concerned Person is trimmed

27



4 Outline of DEUS

down. No user interaction during the repatriation and publication phases is needed any more;
The account only exists for a logical purpose. Repatriated Digital Cards are automatically
accepted, provided that the repatriation originates from an Information Provider being in a
list of certified contributors. Also the list of Information Consumers is preconfigured and new,
repatriated information is published to all Information Consumers in the same way without
filtering. The list of certified Information Providers and Information Consumers is injected into
the specially configured DEUS node during account generation. This account can, for example,
be hosted by the breast-cancer treatment center. Using this approach, information about a
treated patient can be distributed without the patient involved in decision processes.

4.6 Further Issues

Since DEUS accounts need to be addressed, an identifier scheme needs to be found which
fulfills certain conditions. Information exchange between accounts residing on different DEUS

nodes requires network communication. The instrumented protocols need to adhere to several
requirements subsumed below. Another important issue to solve is to guarantee the identity of
a communication counterpart by an authentication process.

4.6.1 Identifier Schemes

To enable communication between DEUS accounts, each account needs to be addressable. Thus,
an identifier scheme needs to be found, that fulfills the following objectives:

1. Global uniqueness

2. Available metadata discovery mechanism

3. No dependency on a specific communication protocol

4. Maturity and widespread deployment

Since DEUS is distributed, accounts may reside on different nodes and thus need to be globally
addressable with a unique ID. An established discovery protocol should be available, so that
metadata about the ID and its associated resources as well as related services can be retrieved.
The objective of abdicating any central infrastructure requires the identifier scheme to neither
need a central instance for discovery nor for establishing the global uniqueness. Furthermore,
the protocol should be agnostic of any specific communication protocol or at least not favour
one in a manner that makes integration of other communication protocols difficult. The last
objective is the maturity of the identifier that may be indicated by a widespread deployment of

28



4.6 Further Issues

it. Two alternatives for identifier schemes fulfilling the posed requirements are evaluated in
section 5.1.

4.6.2 Communication Protocols

For the whole described flow of information and the setup and teardown of trust relationships,
data needs to be exchanged between different DEUS accounts. Due to the distributed nature of
DEUS, this data exchange may result in communication between physical nodes over network
links. Thus, network communication protocols are required that should particularly foster the
principle of low coupling. A common paradigm for communication between loosely-coupled
endpoints is asynchronous message passing. This provides decoupling of the communication
entities in time, space, and synchronization [EFGK03]. Thus, used communication protocols
should basically reflect the message-oriented paradigm.
Since DEUS should not be bound to specific technologies, it should not rely on a specific

communication protocol. Rather, bindings to communication protocols, that fulfill a common set
of prerequisites, should be specified. These bindings map the messages needed for establishment
and termination of trust relationships and sending of Digital Cards to protocol specific methods.
The requirements to which instrumented communication protocols must adhere sum up to the
following points:

1. Guaranteed Delivery [HW03, p. 122] of messages, taking into account that DEUS nodes
may be down over a certain period of time

2. High abstraction level to support the mapping of DEUS high level concepts like users,
their accounts, subscriptions, and message routing

Furthermore, the repatriation transfer follows a one-to-one paradigm that must be supported
by offering a Point-to-Point Channel [HW03, p. 103]. The publication transfer follows a
one-to-many paradigm that must be supported by offering a Publish-Subscribe Channel [HW03,
p. 106]. This may result in different protocols being instrumented in both phases of the
described information flow. However, both phases require guaranteed delivery of messages
and should provide the introduced high level concepts. Protocols complying to the above
requirements are described in section 5.3.

4.6.3 Authentication

Furthermore a secure authentication mechanism is needed that guarantees the trustful authen-
tication of the different users. This can either be provided by used communication protocols or
it needs to be specified on top of them. Authentication mechanisms in healthcare information

29



4 Outline of DEUS

systems are out of the scope of this thesis. DEUS therefore does not yet provide authentication
mechanisms. Further evaluation of the requirements of authentication in healthcare information
systems and existing standards is needed.

4.7 Conclusion

The proposed system for exchanging patient-related information is called DEUS. It follows
document-oriented principles by introducing the notion of a Digital Card which incorporates
the subject of information exchange. Since DEUS is independent of the type of information
contained in Digital Cards, terminology around actors, roles, and artifacts is abstracted to
reflect the domain-unspecific orientation. As a result, DEUS can be used in arbitrary information
distribution scenarios that require a mediated publish/subscribe approach. This architecture
and the basic flow of information is described as Contribution-Repatriation-Publication Chain.
As a summary figure 4.13 outlines the artifacts including their association to phases in the
information flow. Domain-specific terms are opposed to generic terms, hence, reflecting the
introduced generic abstraction layer.

Information

Source

Subject of

Interchange

Repatriation

Target

Publication

Sink

Encompassing 

Depository

of audience party
(read-access by 

audience-party)

(write-access by 

concerned pers.)

Domain

Layer

Generic

Layer

N-times

EHRs

(arbitrary)

information 

sources

Digital

Card

Distributed 

Information 

Folder (DIF)

Foreign 

Information 

File (FIF)

Personal 

Information 

File (PIF)

HL7 CDA

Digital Card

Foreign 

Patient File 

(FPF)

Distributed 

Patient Folder 

(DPF)

Personal 

Patient File 

(PPF)

Exp.

Exp. * 1

* 1 * 1

* 1
�

�

DEUS

Figure 4.13: Domain-specific artifacts opposed to generic DEUS artifacts in the context of the
Contribution-Repatriation-Publication Chain

In the contribution phase, information originating from arbitrary sources is bundled and
imported into DEUS as a self-contained, viable Digital Card. Subsequently, this Digital Card
is repatriated by transferring it to the account of the Concerned Person and assimilating it
into the Personal Information File. The new information is published to subscribers where it is
collected in a Foreign Information File. The Foreign Information Files of all Concerned Persons,
a subscriber declared interest in, are encompassed in the Distributed Information Folder.

30



4.7 Conclusion

This chapter has provided comprehensive considerations of possible features of a system
to support seamless flow of patient-related information. An initial reference implementation
supports all phases of the Contribution-Repatriation-Publication Chain including all introduced
artifacts. However, not all described concepts are implemented yet, though they were considered
during the design phase. DEUS currently supports only a simple trust model for the repatriation
phase while trust connections in the publication phase are fully implemented. With the existing
implementation, assimilating a repatriated Digital Card into the Personal Information File
confines to simply appending it. Thus, the publishing of dossier state changes narrows down to
transferring the newly added Digital Card to subscribers. No concept of subscription groups
nor initial publication of historic Digital Cards is yet implemented. The collaborative scenario
was regarded during DEUS system design. However, implementing it would require a feature to
inject lists of subscribers and trusted contributors.

31





5 Fundamentals

DEUS user accounts must be addressable by providing identifiers that fulfill the requirements
described in section 4.6.1. In the following, with URI1 and XRI2, two types of identifiers are
introduced. If a user obtains an ID of another DEUS user, it should be possible to discover
metadata like available communication channels. Therefore, a stack of discovery protocols
around XRD3 is described. For DEUS inter-node communication, communication protocols are
needed that fulfill preconditions introduced in section 4.6.2. Hence, REST4 as an architectural
style and XMPP5 are elaborated, that both match the requirements to transfer protocols to
a certain degree. Subsequently, a short overview of JMS6 as another possible communication
protocol is given.

5.1 Addressing Schemes and Identifiers

Two alternative identifier schemes to address DEUS accounts are examined, fulfilling the
objectives described in section 4.6: URI and XRI.

5.1.1 URI

From the very beginning of the Internet, a URI has been the central identifier for any addressable
resource. A URI consists of a string of characters that follows a URI scheme and identifies
a single resource. This scheme defines the syntax of a URI as <URI scheme name> + ":" +

<scheme-specific part>. URIs can be classified as either URL7, URN8, both or none of them.
A URN defines the identity of a resource and is often compared to the name of a person. It

is agnostic of the location of a representation of the identified resource and provides no way
to access this representation. The syntax of a URN is "urn:" + <namespace identifier> +

1 Uniform Resource Identifier
2 Extensible Resource Identifier
3 Extensible Resource Descriptor
4 Representational State Transfer
5 Extensible Messaging and Presence Protocol
6 Java Message Service
7 Uniform Resource Locator
8 Uniform Resource Name

33



5 Fundamentals

":" + <namespace-specific part> with the URI scheme name "urn". A famous example
of a URN is urn:isbn:0-486-27557-4, belonging to the isbn namespace and identifying a
certain book1. This URN can be used to uniquely identify the book, but it provides no location
information about where and how to retrieve a representation of it.
On the other hand, a URL provides a method for retrieving a representation of a resource

and is often compared to a street address of a person. A URL is a URI that ‘in addition
to identifying a resource, provides a means of locating the resource by describing its pri-
mary access mechanism (e.g., its network “location”)’[BLFM05]. The syntax of a URL is
scheme-name://domain:port/filepathname?query-string#anchor. The most important
part is the scheme name that defines the syntax of the remaining part and the semantics around
retrieval. Dereferencing a URL applies scheme-specific methods to retrieve the resource represen-
tation. An example for a URL is http://www.gutenberg.org/dirs/etext04/8gs1610.txt2

that retrieves a representation of the specified resource using the HTTP3 protocol.
A URL using the HTTP scheme4 for the most part conforms to the objectives as outlined

above. It is widely deployed and globally unique since the registration of domain names, that
constitute a part of a URL, follow a unified process. While it is specific to a communication
protocol, namely to HTTP, this can be tolerated since HTTP is lightweight. With the discovery
stack around XRD, protocols are available to obtain metadata of a resource. More about this
can be found in section 5.2. Furthermore, due to the spreading of OpenID5, an URL gains
publicity as identifier for persons.

5.1.2 XRI

A new effort in the area of universal identifiers has been made by the invention of XRIs [RM05].
The goal is to create abstract, structured identifiers that are domain-, location-, application- and
transport-independent. The standard is developed under the hood of OASIS6 and comparable to
XML’s role in the world of data formats, where XML constitutes a domain-unspecific, application-
independent, and self-describing data format. Self-description of XRIs is achieved using the
cross-reference feature of XRI that allows the nesting of XRIs using ’()’. Thus structured
identifiers are obtained, that are self-describing using tags that themselves constitute XRIs.
‘Global context symbols’ provide a human-friendly way to indicate the global context of an XRI.

1 The example is an edition of ‘Romeo and Juliet’ of William Shakespeare
2 It is a text document containing William Shakespeare’s ‘Romeo and Juliet’.
3 Hypertext Transfer Protocol
4 In the following, the term URL implies that the used scheme is HTTP.
5 http://www.openid.net
6 Organization for the Advancement of Structured Information Standards

34



5.2 Discovery

If an XRI is prefixed with ’=’, it identifies a person, ’@’ prefixes XRIs identifying companies
or organizations, and an XRI with ’+’ at the beginning denotes a generic concept, like a tag.
Examples of XRIs are:

• =alice

• =smith*alice

• @Acme

• +flower

• +flower*rose

• =Mary.Jones*(+phone.number)

A ’*’ character denotes the delegation of resolution to another resolver, like a dot in a domain
name denotes the delegation to another DNS1 authority. XRI resolution is decentralized using
‘i-brokers’ and can be done in a peer-to-peer way by two institutions assigning an XRI to each
other without other parties being affected. Parts of an XRI can be marked as persistent by
prepending ’!’ to indicate that this part will never be reassigned. Human-friendly XRIs
(‘i-names’) are mapped to machine-friendly XRIs (‘i-numbers’) during resolution. The resolution
of XRIs is done using the XRDS2 protocol.

An XRI is globally unique and a metadata discovery and resolution protocol is available with
XRDS. It is independent of a specific communication protocol since XRIs are abstract. However,
the drawbacks of XRI are its lack of widespread deployment and maturity together with its
complexity.

5.2 Discovery

According to [HL08a], discovery is ‘the process, in which machines learn how to interact with
other machines’. The question to be answered during discovery is not ‘Teach me how to talk to
you’ but rather ‘Which of the languages I know do you understand?’ The process is analogous
to two people meeting, where they try to figure out a common language, both of them are
speaking.
Discovery can further be distinguished into descriptor and service discovery. Descriptor

discovery tries to answer the question about the attributes of a given resource, identified by
a given ID, including capabilities, characteristics and relationships to other resources. The

1 Domain Name System
2 Extensible Resource Descriptor Sequence

35



5 Fundamentals

opposite is achieved using service discovery, where a set of attributes is given and a resource
has to be located, that matches the given set of attributes [HL09a, Appendix A]. The two types
of discovery are closely related, and a typical discovery use case involves both. The focus is on
descriptor discovery first since the typical DEUS use case reflects the need for more information
about a user given the user’s ID. The process of descriptor discovery consists of three phases:

1. Locate the descriptor for a given ID

2. Obtain the descriptor

3. Interpret the descriptor

These three phases form a protocol stack that is outlined in figure 5.1.

Figure 5.1: The discovery protocol stack around XRD ([HL09b])

Focusing on discovery over HTTP, step 2 is rather simple and just consists of issuing an HTTP

GET to retrieve the descriptor document. For step 1, several methods for locating the descriptor
document using HTTP have been analyzed in [HL08b]. This analysis resulted in a description
discovery standard called LRDD1 [HL09a] bundling three methods of locating the descriptor to
a ‘link framework’ [HL09b]:

1. HTTP Link: header [Not09]

2. HTML2 <link/> element [RLHJ99, 12.3]

3. host-meta [NHL09]

The first method obtains the address for the descriptor document by instrumenting the Link

header of the HTTP response packet that is returned after issuing an HTTP GET respectively an
HTTP HEAD to the resource. The second method obtains the descriptor document by following
the HTML <link/> element. The ‘host-meta’ approach locates the descriptor by retrieving a
document from a well-known location, namely /host-meta. There, authority-wide metadata is

1 Link-based Resource Descriptor Discovery
2 Hypertext Markup Language

36



5.3 Instrumented Communication Protocols

stored including a link to the descriptor document. The relationship type which is used for
specifying the link type for all of the above methods is describedby.
An upcoming format for the descriptor document is XRD which is outlined in the following

exemplary document:

1 <XRD>

2 <Subject >http://www.deus.com/alice</Subject >

3 <Alias >http: //www.deus.com/alices -alias</Alias>

4

5 <Expires >2010 -01 -30 T09:30:00Z </Expires >

6

7 <Type>http: //www.deus.org/type/cp</Type>

8 <Type>http: //www.deus.org/type/ip</Type>

9

10 <Link>

11 <Rel>master -data</Rel>

12 <URI>http://www.deus.com/alice/master -data</URI>

13 <MediaType >text/xml</MediaType >

14 </Link>

15 </XRD>

The <Subject/> element contains the ID of the resource, that is described in the descriptor
document, with multiple possible aliases given by <Alias/> elements. <Expires/> contains
an expiration date of the descriptor, which should match the expiration date of the related
HTTP header. Multiple <Type/> elements can be used to describe the resource itself by listing
URI-formatted type tags. An arbitrary number of </Link> elements contain links to associated
resources or services. XRD was derived from XRDS by simplification, renaming of elements, and
adding the facility for self-description using <Type/> elements. More on the history of various
discovery formats around XRDS can be found in the specification of XRDS-Simple [HL08c].

5.3 Instrumented Communication Protocols

As it was elaborated in section 4.6, used communication protocols have to fulfill certain
requirements. Two protocols are introduced, that are candidates for being instrumented as
transfer protocols. A REST binding provides support for a point-to-point channel and may
be used for transfer in the repatriation phase. An XMPP binding is offered that particularly
supports publish/subscribe communication.

37



5 Fundamentals

5.3.1 REST

Roy Fielding, one of the authors of the HTTP specification, specified a principal architectural
style of hypermedia system in [Fie00]. This is called Representational State Transfer and
systems adhering to this architecture are called RESTful.

REST introduces the concept of a resource as the central subject of interest, being uniquely
addressable. These resources represent data being exchanged, as well as application state. All
resources share a common, minimal, well-defined interface that allows the transfer of resources
and the incorporated application state to a client. While a resource is an abstract concept,
only representations of a resource are exchanged. These representations are identified by a
well-defined set of content types. The basic exchange protocol is stateless and follows the
client-server paradigm. The name Representational State Transfer reflects the concept of
transferring state in form of representations of abstract resources.
The most prominent example of a RESTful architecture is the WWW1. Its overwhelming

success and its scalability can be attributed to the key principles of a RESTful design. Each re-
source on the Internet is identified by a URI. Different content types of resource representations
are specified by MIME2 types with some of the most important being text/plain, text/html,
application/xhtml+xml, application/xml, and application/json. A certain representa-
tion of a resource can be retrieved by a process called ‘Content Negotiation’ that allows the
client to specify accepted content types. The used protocol is HTTP, offering only a small
set of methods, including POST, GET, PUT, and DELETE. These methods can be associated with
the operations CREATE, READ, UPDATE, and DELETE (‘CRUD’) known from database technology.
The HTTP specification states, that POST creates ‘a new subordinate of the resource identified’
[FGM+99, p. 54]. On the other hand, PUT is intended to create a new resource ‘stored under
the supplied Request-URI’. If a resource identified by the given URI already exists, HTTP states,
that ‘the enclosed entity SHOULD be considered as a modified version of the one residing on
the origin server’ [FGM+99, p. 55]. HTTP is stateless and follows the client-server principle,
with the client being a user-agent and the server being a HTTP web server. HTTP also supports
the signaling of errors by its ‘status codes’.
Instrumenting HTTP and following the architectural style of REST, a web service can be

offered that can provide arbitrarily complex use cases. Concepts of the problem domain are
mapped to patterns of URIs. Using these URIs, HTTP can be instrumented to exchange resource
representations and thus modify application state. An example would be an application offering

1 World Wide Web
2 Multipurpose Internet Mail Extensions

38



5.3 Instrumented Communication Protocols

the URI http://www.example.org/orders. Issuing an HTTP GET to this URI would retrieve a
list of all orders. POST would add a new order, a presentation of which is passed in the body
of the HTTP message. Special orders could be retrieved by using the URI template [GHNO06]
/orders/{id} and issuing a GET to it. PUT would be used to add a new order or update an
existing one, while DELETE removes an existing order. The basic difference between POST and
PUT can be seen here: POST yields the choice of the ID of the new resource to be added to the
server, while PUT specifies an ID to be used.

DEUS may offer a RESTful API1 to support the transfer of messages between DEUS peers.
The advantage of a RESTful API is the wide-spread use of the underlying HTTP protocol that
allows for the usage of existing infrastructure. HTTP supports a point-to-point communication
channel as required, while delivery of messages cannot be guaranteed. Thus, an additional
queue for unsent messages on sender side needs to be implemented. Messages that cannot
be delivered to communication partners are appended to this queue and resending is tried
periodically. Furthermore, no high level concepts are encompassed by HTTP that support the
notion of users, accounts or subscriptions.

5.3.2 XMPP

The XMPP protocol suite came out of the Jabber instant messaging and presence protocol and
constitutes its core protocol. XMPP is XML-based, follows an open development model, and
allows for simple extensibility using XML namespaces. No central instance is in control over
the whole system since it follows a distributed paradigm. It is specified in RFC2 3920 and RFC

3921. The goal in the beginning of XMPP was just to create an open and extensible protocol
for Internet-wide instant messaging and presence information. In the last years, it expanded
into the domain of general message-oriented middleware and is widely deployed on thousands
of servers across the Internet. The core concepts are the following:

• Decentralization of the XMPP infrastructure by using the concept of an ‘XMPP domain’
that is governed by a single XMPP server. This server manages user accounts of all users
in this domain and handles communication inside the domain. All XMPP domains that
are able to exchange messages are combined to an ‘XMPP network’.

• Distinguishing users and resources
A user represents by its user account a logical message endpoint. While messages are
normally directed to a user, they are actually delivered to ‘XMPP resources’ that constitute

1 Application Programming Interface
2 Request For Comments

39



5 Fundamentals

different XMPP clients the user is instrumenting. Thus, a user can instrument multiple
clients simultaneously, while a message directed to the user is routed to a single resource
by its XMPP server.

• Each entity of the XMPP infrastructure can be addressed by an XMPP ID. It takes the
format [user@]server[/resource] where server is an Internet domain name, user is
a nickname and resource indicates a special client. If the part user@ is omitted, the
server is addressed. While messages are usually addressed to a user, a special resource
of a user can be identified by appending the resource name to the XMPP ID. Typical
examples for a resource would be home, work, mobile.

• To be able to see the online status of a user, exchange of presence information is provided
by the XMPP protocol. Users can subscribe to the presence status of other users and thus
build up a ‘buddy list’.

A typical XMPP session starts with the client sending <stream:stream> to port 5222 of the
XMPP server the user has an account on. The server answers with also starting an XML stream
by returning <stream:stream> containing a session ID as an XML attribute. An authentication
of the user to its server follows which logs in the user to its user account and registers itself as
a resource. Afterwards, packets are exchanged that constitute self-contained XML fragments
and are called ‘stanzas’. These packets follow XMPP subprotocols and offer a wide range
of possibilities, including instant message sending, presence status exchange, querying user
metadata and more. To finish the conversation, the client sends an </stream:stream> message
to the server that answers with the same message and subsequently tears down the TCP1

connection. Thus, in the course of the conversation, two complete XML documents are exchanged
between the client and the server. Error conditions occurring during the conversation are
signaled using the XML element <stream:error>.

Communication always happens between a client and a server while client-to-client interaction
is not supported in order to keep the client component as simple as possible. If a message is
sent to a target account whose user is offline, the message can be stored on the XMPP server.
The message is delivered to the user as soon as the user logs in again, guaranteeing message
delivery. If the message is directed to another XMPP domain, the server to which the client
is connected establishes a connection to the server governing the target domain. A special
server-to-server protocol is instrumented to forward the message to the target domain where it
is delivered to the user account. Thus, in a typical inter-domain communication scenario, a

1 Transmission Control Protocol

40



5.3 Instrumented Communication Protocols

message is sent from a client to its server, which forwards it to the server of the target domain,
where it is delivered to the target client.

The presence subprotocol is used for updating the presence state of a user and managing
presence subscriptions. Most of the logic of subscription management is included in the server
component keeping the client as simple as possible. A list of presence subscriptions, called
‘roster’ in the context of XMPP, are stored with the user account on the server. For updating
a user presence status, the client sends a single presence message to the server, which is
subsequently forwarded to all subscribers on the roster.
Furthermore, the presence protocol is used for supporting a basic groupchat facility.

Each group chat room has its own ID following the general XMPP ID conventions: <chat-

room>@<server>. Messages being sent to a chat room are addressed to this ID and forwarded
by the group chat server to all members of the group chat. A user joins a group chat room by
sending a presence update message of type ‘available’ to the group chat ID. The from field of the
XMPP message packet carries the user’s normal XMPP ID. On sending a ‘presence unavailable’
packet to the group chat ID, the user is removed from the group chat room.

XMPP IDs resemble email addresses, and the overall architecture is similar to the distributed
SMTP1 architecture for mail delivery. The concept of various physical communication endpoint
known as XMPP resource has been introduced due to the problem of SMTP of accessing stored
emails from different locations.

XMPP offers guaranteed delivery of messages by its ‘offline messages’. Messages that cannot
be delivered to the recipient are stored on the XMPP server. Concepts of users, their accounts,
as well as message routing, and subscription management are encompassed by XMPP. It
supports point-to-point as well as publish-subscribe communication channels. The latter
can be implemented by instrumenting either the presence protocol or the pub/sub extension
[MSAM09].

5.3.3 JMS

Another alternative for being adopted as transfer protocol is JMS [HBS02]. JMS is an API,
that deals with asynchronous, message-oriented communication between systems. It offers
two paradigms for message sending: point-to-point using message queues and topic-based
publish/subscribe. The JMS API is implemented by systems called JMS providers that are either
stand-alone or embeddable. Since JMS specifies no bindings of the introduced JMS messaging
paradigms to specific communication protocols, it is up to the JMS provider to offer arbitrary

1 Simple Mail Transfer Protocol

41



5 Fundamentals

bindings. One example of a JMS provider is Apache ActiveMQ1. Besides others, ActiveMQ
offers a binding to the XMPP protocol.

The publish/subscribe paradigm of JMS is bound to XMPP methods in the following way: A
JMS topic is mapped to an XMPP group chat room. A client joining this room subscribes to the
associated JMS topic, leaving the room results in being unsubscribed from the topic. Messages
being published to a topic are broadcasted in the group chat room. XMPP group chat support
has been introduced above.

JMS offers no facility for requesting a subscription that can either be confirmed or refused.
Since a subscription is a low level concept in JMS, it is always granted without intended
user interaction. Other high-level concepts like user accounts are not provided, while JMS

guarantees the delivery of messages by making them persistent. A point-to-point as well as a
publish-subscribe communication channel are supported as described above. A drawback of
JMS is its coupling to the Java programming language.

5.4 Conclusion

This chapter introduced URL and XRI as possible identifier schemes for DEUS accounts. While
XRI enables addressing of real world entities, the benefit of URL is its wide-spread use and
publicity. Metadata discovery for URLs is provided by the XRD standard together with
surrounding protocols. Three candidates of transfer protocols to be used are introduced that
fulfill the DEUS requirements to communication protocols to a certain degree. REST offers
an architectural style, implemented by HTTP, that provides no high-level concepts needed by
DEUS. JMS is an artifact of the Java world, while XMPP provides all the features, that are
required by DEUS.

1 http://activemq.apache.org

42



6 Architectural Overview and Party
Information Data Model

A reference implementation proves the practical feasibility of the concepts presented in chapter 4.
Therefore, some decisions were made during the design phase of DEUS. Amongst others, user ID
type and an associated discovery method as well as used communication protocols were chosen.
Bindings to them are defined and an abstraction is introduced to decouple the DEUS core
from specific protocols. The implemented system is modularized using vertical and horizontal
decomposition, while further cross-cutting concerns were identified. The resulting architecture
adheres to the three-tier-style, where the application logic is included in the core tier. A set
of well-defined interfaces is exported to the presentation tier that also encompasses neighbor
systems. Decoupling of any concrete infrastructure technology like data stores or specific
communication protocols is achieved by introducing layers of abstraction. The horizontal
decomposition is most visible in the Soul sublayer, where subsystems support the functional
roles introduced in section 4.2. Since DEUS is agnostic of the content of exchanged Digital
Cards, an exemplary Digital Card type is introduced containing general party information
including contact and further master data.

6.1 DEUS System Design Decisions

DEUS adheres to a mediated publish/subscribe architecture that inherently results from the
basic interaction scenario described before. User accounts are addressed by URIs, while the
design of the system allows for arbitrary ID types to be adapted. URI as addressing scheme
was preferred over XRI due to its widespread use, maturity and simplicity. Nonetheless, XRI is
a candidate for being integrated in the future, since it offers addressing of entities like persons
and organizations which is conceptually preferred over URI addressing web resources.

For discovering metadata about a user account with a given ID, a stack of discovery protocols
around XRD is intended. Step 1 and 2 of a discovery process, as described in section 5.2 involves
locating and obtaining a descriptor document. This is supported by LRDD instrumenting HTTP,
thus requiring the user ID type to be a URI of type URL. Communication between DEUS

43



6 Architectural Overview and Party Information Data Model

accounts residing on different nodes is supported by a transfer protocol binding to XMPP that
was described in section 5.3.2.

6.2 Decomposition of DEUS

Decomposing DEUS results in a set of modules with a well-defined scope of work. The core tier
exports functionality provided by its subsystems to either be used by a user interface or by
neighbor systems. Therefore, it instruments data stores and communication protocols being
encompassed in the infrastructure tier.

6.2.1 Vertical, Horizontal and Lateral Decomposition

DEUS is decomposed vertically into tiers and sublayers. The horizontal decomposition into
subsystems is deduced from the differentiation of the functional roles introduced in section 4.2.
Thus, the modules have high functional cohesion and a distinct scope of work. As additional
‘lateral’ decomposition, the Barker subsystem provides cross-cutting functionality for user-
system interactions. The resulting overall architecture is outlined in figure 6.1.

Infrastructure

Access 

Sublayer

Preparation

Sublayer

NSI Sublayer

DEUS Soul 

Sublayer

(incl. Subsys.

Decompos.)

C
li
e
n

t-

S
e
r
v
e
r

DEUS Peers

Figure 6.1: The DEUS architecture

6.2.2 User and Neighbor System Interaction

The presentation tier is intended to offer arbitrary interfaces for user interaction like a web
portal. Alternatively, neighbor systems can access the DEUS system by several remote invocation

44



6.2 Decomposition of DEUS

techniques that are provided by the NSI1 sublayer. These institutional neighbor systems access
their DEUS extension within an intranet by client/server access. They should be clearly
distinguished from DEUS peers which are nodes that constitute a part of DEUS themselves. By
contrast, neighbor systems are not part of DEUS. Both, the user interface, as well as neighbor
systems instrument the same services being exported by DEUS.

6.2.3 The DEUS Core

The application tier or core layer encompasses the NSI sublayer, as well as the preparation
sublayer, the Soul, and the infrastructure access sublayer. The primarily disposed NSI remote
invocation technology is a REST interface, since the RESTful approach fits with the document-
oriented perspective. Modules that provide NSI access by SOAP2 or any other remote invocation
technology could be deployed additionally. All invocations to the subsystems that reside in the
DEUS Soul sublayer are intercepted by the preparation sublayer. It checks for data validity and
transforms the parameter types to domain data types, thereby shielding the Soul subsystems
from calls with invalid data.
The main sublayer of the DEUS core is the Soul sublayer, incorporating the essential busi-

ness logic. Here, the horizontal decompositioning and the resulting subsystems are most
visible. These subsystems, their interfaces, and their cooperation are further elaborated on in
section 6.2.5.

6.2.4 Access to the Infrastructure

The infrastructure tier encompasses data stores and DEUS data schemas as well as transfer
protocols for communication with DEUS peers. The infrastructure access sublayer within the
DEUS core decouples the Soul from specific infrastructure technology. The data access sublayer
provides an API to the Soul that solely handles domain objects and is agnostic of any specific
persistence technology. An implementation of this API provides a binding to a specific back-end
data store.
The transfer access sublayer provides the Soul with a facility to communicate with remote

DEUS accounts. Instrumenting this sublayer, it is transparent to the Soul whether the targeted
account resides on another or on the same DEUS node. Thus, the transfer access sublayer
incorporates a layer of abstraction between the DEUS Soul sublayer and concrete communi-
cation protocols. Hence, DEUS is kept independent of communication protocol internals and

1 Neighbor System Interface
2 Simple Object Access Protocol

45



6 Architectural Overview and Party Information Data Model

furthermore allows to integrate arbitrary other protocols fulfilling the requirements posed
in section 4.6.2. These protocols are instrumented by implementing bindings that map the
required functionality to protocol-specific methods. These bindings follow a plug-in architecture
and can be deployed into DEUS at runtime. A process of communication protocol negotiation
chooses a protocol binding that is available to the sender of a message as well as to the receiver.
This is done on a per-message basis so that protocol bindings that are plugged in during runtime
can immediately participate in the protocol negotiation. A loopback binding for node-local as
well as an XMPP binding for inter-node communication are defined.

6.2.5 Soul Subsystems

Figure 6.2 outlines the subsystems of the Soul sublayer in the context of the Contribution-
Repatriation-Publication Chain described in section 4.4. The subsystems are grouped according
to their related distribution roles1. For the sake of simplicity, only a selection of the interfaces
exported by the subsystems are included in the figure. Also, the lateral Barker system, that
provides user-system interaction is omitted.
Interfaces exported to the presentation tier are displayed above the subsystem components.

These interfaces can be instrumented by a user interface and are furthermore published in
the NSI sublayer to be remotely invoked by neighbor systems. Interfaces displayed below the
subsystem component are exported to the transfer access sublayer and thus to DEUS peer
systems.

core

Concerned PersonInformation
Provider

Information Consumer

Repatriation   
Hub

Publication    PIF
Governing

Sub-
scription    

DIF
Governing

Contri-
bution

cancel
subscription access DIFaccess PIF unsubscribesubscribenotifyforward digital card

apply patch
to FIF

notice
subscription

deletion

 pub/sub
transfer

 pub/sub
transfer

request
subscription

assimilate
into PIF

accept digital card

notice decision

 repatriation
transfer

 repatriation
transfer

Visual Paradigm for UML Standard Edition(University Erlangen-N??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????)

Figure 6.2: The Soul subsystems

1 See section 4.2 for more information about the distribution roles. Since a DEUS actor like a Patient may
assume several distribution roles, a DEUS node needs to support all distribution roles. Thus, it always
encompasses all subsystems.

46



6.2 Decomposition of DEUS

The Contribution subsystem provides a facility to import Digital Cards into the DEUS system.
Therefore, the interface forward digital card is exported to the presentation tier. The
interface is intended to take a digital card, sign it, and forward it to the Concerned Person’s
DEUS account using the DEUS peer communication protocol infrastructure. Omitted here are
the interfaces used to establish repatriation relationships as described in section 4.4.1.2.
The Repatriation Hub subsystem of the receiving account accepts the Digital Card by an

accept digital card interface. It presents the decision whether to accept or decline the
contribution to the user by delegating the event to the Barker subsystem. There, it is appended
to the attention list that constitutes a collection of elements that require the user’s attention.
The repatriated Digital Card is meanwhile persisted in a staging area.

If the user confirms the plea about the Digital Card acceptance, the Digital Card is removed
from the staging storage and merged into the Personal Information File. Therefore, the interface
assimilate into PIF is offered that is only called from the Repatriation Hub subsystem and
not exported to the presentation tier. The exported interface access PIF can be used by the
presentation tier to retrieve the Personal Information File.

The functionality around the traditional publish/subscribe capabilities of DEUS is comprised
in the subsystems Publication and Subscription. The Subscription subsystem offers a subscribe

interface to the presentation layer. An invocation of it results in a remote call to request

subscription of the publication subsystem of the addressed DEUS account. The subscription
request is delegated inside the Publication subsystem to the Barker that presents the request
to the user for decision. As soon as the user decides about the request, the decision is sent
back and the publication relationship is established on both sides. The interface unsubscribe

of the Subscription subsystem may be used by clients to tear publication connections down
resulting in a remote invocation of methods on the Publication subsystem.

The Publication subsystem offers the interface notify to the presentation tier, that triggers
the publication of any changes of the Personal Information File. Furthermore, the interface
cancel subscription is used for terminating a pub/sub relationship initiated by the Concerned
Person and results in a remote call to notice subscription deletion of the Subscription
subsystem. Interfaces for publisher-initiated invite of subscribers are not displayed.

As the consequence of a received update of a Concerned Person’s Personal Information File,
the interface apply patch to FIF of the DIF-Governing subsystem is instrumented. This
interface offers to merge a received patch into the Foreign Information File which is associated
with the Concerned Person. Moreover, DIF-Governing exports an interface access DIF to the
presentation tier that can be used to retrieve data from the Distributed Information Folder.

47



6 Architectural Overview and Party Information Data Model

6.3 The Party Information Data Model

As described in section 4.3.3, the focus of this thesis is not on the semantics of exchanged
patient-related data. Thus, providing a type of Digital Card incorporating CDA documents was
deferred to the future. Instead, a data model encompassing patient master data is introduced
that is compatible to the vCard standard for address and contact data [DH98]. Figure 6.3
presents an EERD1 of a party’s master data, that also allows for non-person parties like
organizations to be included. The model forms a superset of the data that can be stored using
vCard including features of the upcoming version 4.0.

Information about a DEUS party, either being a person or an organization, is contained in
a Digital Card of type Party Information Digital Card. The focus of the DEUS system is on
individuals, so that only the entity person is elaborated on in the EERD. A person is described
by a name consisting of a collection of prefixes, a given name, a collection of additional (middle)
names, a family name, a collection of suffixes, an optional maiden name, and an optional
nick name. The attribute full name has its origin in the vCard standard, where this is the
default display name of a vCard. It may be composed of several parts of the introduced name
attributes. Further attributes of a person are the gender, date and place of birth, date and place
of death, and spoken languages stored according to the ISO639-22 standard. The attributes
photo, sound, and note are again derived from the vCard standard.

A person may have multiple addresses which are either tagged as personal or professional and
furthermore supplied with a label and a numeric priority. An address constitutes a weak entity,
since, in rare cases, two persons may have the same address and thus, the primary key of the
person needs to be part of the primary key of an address. It is made up by a country, a region,
a locality (confining to a city in most cases), a zip code, and an arbitrary address extension.
All of these attributes embody the discriminator part of the weak entity’s primary key and
originate from the vCard standard. Furthermore, an address can either be a street address or
the address of a post office box. For the sake of simplicity, an address is not further specialized
into two subtypes. The specialization rather is denoted by the keyword ‘XOR’ between the
attribute POB and the attribute street.

A person may have multiple phone numbers which have the relationship attributes in common
with the address relationship. Phone label as a free text attribute may be ‘car’, ‘assistant’, or
‘secretary’ and thus encompass information that is not contained in the schema. Since two
persons in the DEUS system may have the same phone number, phone is also a weak entity

1 Enhanced Entity-Relationship Diagram
2 ISO639-2, Codes for the representation of names of languages, http://www.loc.gov/standards/iso639-2

48



6.3 The Party Information Data Model

PERSON

d

namefirst/given

family/last

maiden

additional

prefix

suffix

gender

birthphoto

full name

time zone

GEO

long. lat.

PERSON

11
html?

1
1

AOL

MSN

ICQ

Skype

Gtalk

Jabber 

Yahoo

IRC

1

type
blog

home

google health

...

office

1

1

type
parent

child

sibling

friend

manager

assistant

agent

PHONE

EMAIL

ADDRESS

WEB 

PRESENCE

prof.

pers.

label

priority

prof.
pers.

label

priority

prof.

pers.
label

priority

has has

N
N

hasN

has

N

RELATED 

PERSON

has

#

country region locality

zip

street

extension

#

prof.

pers.

prof. pers.

label priority

= city

address

map as N

URI

capabilities

voice?

text?

video?

LL/cell/SIP/fax/

pager

why weak entity?

if multiple people use the same 

phone => # is not unique!

why weak entity?

if multiple people use the same mail 

address (mailing lists?) => address 

is not unique

why weak entity?

if multiple people share a website => 

url is not unique

url

N

phone labels:

car

assistant

secretary

IM

ACCOUNT

has

N

OCCUPATION

1

type

institution

role

title

department

LOCATION

has

logo

POB

XOR

code

priority

nick

death

day place

day

place

note

sound

language

PartyInfor-

mationDC

DEUS 

PARTY
contains1 1

Figure 6.3: An EERD of a party’s master data

49



6 Architectural Overview and Party Information Data Model

with the phone number as the partial primary key. Each phone may have the capabilities voice,
text and video constituting boolean flags. Moreover, a phone is either of type landline, cell,
Internet phone (SIP1), fax, or pager.

A person may have multiple email addresses where the address string constitutes the partial
key. Aside from the relationship attributes, it contains a flag to indicate desired delivery of
emails in HTML format. The case of multiple persons using the same email address is handled
by declaring email as a weak entity. The same holds for optional instant messaging accounts,
where the partial key is the identifier of the account, together with its type which encompasses
a list of instant messaging providers. A person may specify several web presences, where the
attribute url is the discriminator. A further attribute indicates the type of web presence, e.g.
being either a blog, a homepage, or even a Google health account web address. Neither a label
nor a priority is attached to this relationship.
A person is restricted to have one occupation at most, being identified by an institution, a

role, a job title, and a department. Since, by chance, two individuals in the DEUS system may
have the same occupation as far as identified by these attributes, occupation again is a weak
entity. Furthermore, a logo and an office description can be attached to an occupation, while it
lacks any label or priority. Also, following the vCard standard, it is possible for a person to
attach related persons, partially identified by a URI. Each relationship to a related person is
attributed a type that further specifies the related person, like parent, child, sibling, friend,
manager, assistant, or agent.

6.4 Conclusion

A reference implementation of the concepts introduced in the previous chapters proves the
feasibility of the design. URI is thereby used as the identifier type. A decomposition in a
horizontal, vertical and lateral manner results in modules with a well-defined scope of work.
The core tier of the three-tier architecture exports functionality to the presentation tier and
to other DEUS accounts. Communication between accounts instruments the transfer access
sublayer that adheres to a plug-in architecture for adding arbitrary transfer protocol bindings.
The horizontal decomposition of the Soul sublayer results in clearly separated subsystems
supporting the functional roles introduced in previous chapters. An exemplary type of Digital
Card contains patient master data forming a superset of the vCard address data standard.

1 Session Initiation Protocol

50



7 System Design

A major design goal was to embody boundaries and interfaces of system modules also during
runtime. Therefore, OSGi is used as a dynamic component model that provides application
life cycle management, a service registry, and an execution environment. Subsequently, all
modules of DEUS are packaged as OSGi bundles exporting their functionality as OSGi services
to other bundles. The domain model bundle provides other subsystems with the basic DEUS

artifacts introduced in previous chapters. It is structured according to the system dissection by
grouping artifacts related to subsystems.

The infrastructure access sublayer is divided into a data access part, which abstracts from a
specific backing data store, and into a transfer access part. Core subsystems communicating
with other DEUS accounts instrument the transfer access sublayer for sending messages. A
loopback binding for node-local communication as well as a basic binding to the XMPP protocol
for inter-node data exchange are implemented as plug-ins.

Business logic in the Soul sublayers is decomposed into subsystems with well-defined interfaces
exported to the presentation tier, to other subsystems, and to other DEUS peers. The Barker
subsystem provides system-to-user interaction by the management of attention lists and user-to-
system interaction by its decision processor. The additional Gatekeeper subsystem encapsulates
DEUS account registration, user login, and the setup and teardown of distribution roles assumed
by accounts.
Functional roles introduced in section 4.2 are supported by the subsystems in the Soul

sublayer: The subsystem Contribution supports the functional role Contributor. The subsystems
Repatriation Hub and PIF-Governing support the functional role Repatriation Authority. The
subsystem Publication supports the functional role Publisher. The subsystem Subscription
supports the functional role Subscriber. The subsystem DIF-Governing supports the functional
role Retriever. All these subsystems together provide the functionality described in the previous
chapters and are individually packaged as OSGi bundles.

51



7 System Design

7.1 From Components to OSGi Modules

OSGi introduces the notion of a bundle incorporating a module with a defined life cycle. This
life cycle includes installing, starting, stopping, updating, and uninstalling the bundle without
requiring the deployment platform to be restarted.

The OSGi service registry provides dynamic registration and unregistration of services. Since
this is the only facility that bundles can use to interact with each other, a clear interface
design is enforced. Trackers that detect the loading or unloading of bundles and services can
react to these events and enforce the application to adapt accordingly. The OSGi environment
fosters the principle of small, cohesive bundles. By interacting with each other only through
exported services, loosely coupling is promoted. The internals of bundles are hidden by the OSGi

container. Instrumenting a deployment descriptor, bundles can declare their name, version,
and dependencies on other bundles.
Due to these benefits, the DEUS system is implemented as a set of OSGi bundles which

incorporate the components obtained by decomposing the system. Bundles export interfaces
as services by registering an implementation of an interface in the service registry. This plays
especially well with a layered architecture, where bundles of a higher layer consume OSGi

services offered by bundles of lower layers. Since there is no restriction enforced by OSGi which
bundles may import which services, a meaningful naming of the service interfaces is introduced.
This naming specifies the part of the system that is intended to consume certain services.

7.2 Domain Model

The previous chapters introduced several artifacts occurring in the DEUS system. Most of
the artifacts can be grouped according to the horizontal decomposition and thus be assigned
to subsystems. However, several cross-cutting model elements are identified that cannot be
related to a specific subsystem. This grouping is outlined in figure 7.1.

7.2.1 Cross-Cutting Model Elements

Several model elements cannot be related to a specific subsystem, but rather are cross-cutting
and needed in the whole system. These model elements include UserMetadata, that encapsulates
basic information about a user including a full name and gender. This is needed to display list
entries of the user, containing a name, while the gender is used to adjust grammar.

The UserId element is an abstract model element incorporating a generic user ID. It is further
examined in figure 7.2. UserId requires classes deriving from it to implement the abstract
methods getType and toString. UserUrl is a derivation of it including a username and the base

52



7.2 Domain Model

Repatriation 

Hub

PIF-

Governing

Publication Subscription DIF-

Governing

cross-cutting

ListOf

Contributors
PIF

ListOf

Subscribers

ListOf

Publishers
DIF

FIF

UserMetadata UserId

Barker

Attention

Element

AttentionListLoPEntryLoSEntryLoCEntry

DigitalCard DigitalCardId

Gatekeeper

Account

Party

Information
Patch

Figure 7.1: The DEUS domain model with model elements grouped by subsystems

URL of the DEUS node where the user account resides on. The method getUrl returns the URL

that results by appending the username to the server base URL.

Figure 7.2: The UserId model element

The introduced concept of a Digital Card manifests itself in the abstract model element
DigitalCard. A DigitalCard contains a label and its date of creation and is outlined in figure 7.3.
Its primary key constitutes a separate model element of type DigitalCardId with its components
being described in section 4.3.1. The single concrete Digital Card is of type PartyInformationDC

and not included in the figure. It contains the model element PartyInformation that represents
the whole data structure described in section 6.3. PartyInformation only constitutes the root
entity of a comprehensive object graph, what is indicated by the icon on the right side.

The Patch model element incorporates a change that results from assimilating a Digital Card
into the Personal Information File. Depending on the assimilation strategy, concrete patch
elements inherit from the abstract Patch. These patches should be merged after publication into
the Foreign Information Files of any subscribers. Since the repatriation semantics currently
confine to only appending the repatriated Digital Card, the only concrete patch type contains
a single Digital Card.

53



7 System Design

7.2.2 Domain Model Elements for Administration of Relationships

For the repatriation as well as the publication phase, trust relationships need to be built up
prior to data exchange, as it was described in section 4.4.1. There, the concept of a list of
contributors, a list of subscribers, and a list of publishers were introduced. These lists and their
entries are incorporated in the domain model with their own model elements, painted blue in
the figure. Each type of list entry contains the UserId of the contributor/subscriber/publisher
and related UserMetadata.

7.2.3 Dossier and Depository Model Elements

The essential concepts of the ‘dossier’ artifacts Personal Information File and Foreign Information
File have already been introduced in section 4.3.2. Furthermore, the encompassing Distributed
Information Folder as depository artifact has also been explained. These entities are contained
in the DEUS model under their abbreviations and displayed yellow in figure 7.1. Both, the
PIF and the FIF model elements contain a set of DigitalCards without a specified ordering. The
DIF entity contains a set of FIF entities. The introduced dossier and depository elements are
outlined in figure 7.3.

-id : DigitalCardId
-label : string

+getDigitalCardId()

DigitalCard

-contributorId : UserId
-cpId : UserId
-contributorProvidedDiscriminator : string

DigitalCardId

PersonalInformationFileForeignInformationFile

+getDigitalCards()

InformationFile

+getForeignInformationFile(UserId cpId)
+updateForeignInformationFile(ForeignInformationFile ...
+addForeignInformationFile()

DistributedInformationFolder

1

1

*

1

*

Visual Paradigm for UML Standard Edition(University Erlangen-N??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????)

Figure 7.3: The dossier and depository model elements

7.2.4 Attention Model Elements

The lateral Barker system is used for system-user interaction by presenting attention elements
to the user. These attention elements constitute pleas and notices that require the attention
of the user. They are manifested in the domain model as derived elements of the abstract
AttentionElement, painted green. The fact that AttentionElement is just the base element of a list
of concrete attention elements is indicated by the icon on the right side. Each AttentionElement

54



7.2 Domain Model

contains a consecutive number, its creation date and a flag, that indicates if the user already
interacted with it. It is outlined in figure 7.4.

-id : int
-creationDate : Date
-noticed : boolean

AttentionElement

Visual Paradigm for UML Standard Edition(University Erlangen-N??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????)

Figure 7.4: The abstract base entity AttentionElement

All attention elements are collected in an AttentionList and are outlined in figure 7.5. A basic
distinction needs to be made between notice and plea attention elements. Notices, displayed
blue, only inform the user of an event, while pleas, displayed orange, require a user decision.

publication repatriation

connection

establish terminate

pub. init sub. init

Subscription

OfferPlea

Subscription

OfferConfirmed

Notice

Subscription

OfferRepelled

Notice

Subscription

RequestPlea

Subscription

RequestGranted

Notice

Subscription

RequestDenied

Notice

Subscription

CancelNotice

Unsubscribe

Notice

Update

Notice

Repatriation

Plea

Figure 7.5: The hierarchy of attention elements

All attention elements can be grouped on top level according to the two phases of information
exchange between accounts, namely repatriation and publication. The repatriation phase
currently only comprises a plea about a repatriated Digital Card. The publication elements
include a notice being displayed to the user when an update patch is received from any
connected publisher. Furthermore, attention elements concerning trust connections are grouped
by occurrence during establishment or termination. Since termination requires no decision from
a user, only two notice elements display the teardown of a trust relationship either initiated by
subscriber or publisher side.
The attention elements of connection establishment are further distinguished in two groups

regarding the actor that initiates the connection. A publisher initiating a connection results in
a SubscriptionOfferPlea issued to the subscriber. According to figure 4.10, the subscriber either

55



7 System Design

confirms or repels the offer resulting in two different notices being displayed to the publisher,
reflecting the decision. A subscriber initiating a connection entails a SubscriptionRequestPlea

issued to the publisher. The publisher either grants or denies the request resulting in two
different notices reflecting the decision to be displayed to the subscriber.

7.2.5 The Model Elements of the Lateral Gatekeeper

Another lateral system is Gatekeeper that is responsible for account generation and logging
users in and out of their accounts. A user account is embodied by the model element Account

that contains the UserId of its owner. Furthermore, a local username is included that provides
a decoupling of the username during login and the ID of the user: While the ID needs to
be globally unique, the username needs to uniquely identify the user only on the local node.
This separation allows for flexibility in the choice of a user ID. However, simplicity benefits
from a local username coinciding with a potential username part of the user ID. The login
information is completed by the password, also stored in the Account element. Since a DEUS

user can potentially assume all distribution roles, introduced in section 4.2, the associated roles
need to be stored in the Account model element. The Account entity is outlined in figure 7.6.

-localUsername : string
-password : string
-userId : UserId
-loggedIn : boolean
-distributionRoles : set<DistributionRol...

Account

Visual Paradigm for UML Standard Edition(University Erlangen-N??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????)

Figure 7.6: The Account entity and its properties

7.2.6 The Resulting OSGi Bundle

It would be possible to split the domain model into different bundles, according to the grouping
of figure 7.1. However, quite often, model elements from different subsystems are required
together. Thus, it was decided to include all model entities into a single OSGi bundle and
structure the module internally according to the subsystem decomposition. The resulting
bundle is a ‘pure library’ bundle that is only imported by other bundles and does not register
any services. This reflects the basic difference between passive objects without behaviour and
active, often stateless objects with well-defined behaviour1. This principle of dividing passive,
data carrying objects and active, behaviour-rich objects is adhered to throughout the whole
DEUS system architecture.

1 This differentiation is also applied to distinguish between Entity Beans and Session Beans in JEE2.

56



7.3 Infrastructure Access Sublayer

7.3 Infrastructure Access Sublayer

In figure 7.7 details from figure 6.1 outline the infrastructure access sublayer. This layer was
introduced to abstract from concrete backing data stores and used communication protocols.
In the following, communication protocols being used by DEUS to transfer messages are also
called transfer protocols. The transfer access sublayer allows for adding arbitrary bindings to
transfer protocols during runtime, since it is implemented adhering to a plug-in architecture.

Infrastructure
Access 
Sublayer

Preparation
Sublayer

NSI Sublayer

DEUS Soul 
Sublayer

Figure 7.7: The DEUS infrastructure access sublayer architecture

7.3.1 Data Access

Keeping runtime objects persistent requires a back end data store and a mapping from runtime
objects to the data model of the store, following the Mapper pattern in [Fow03, p. 473]. To
keep DEUS independent of any particular storage technology, the mapping to the storage data
model must be replaceable. This results in creating a storage-unspecific API for data storing
and loading, and separating this API from concrete implementations (Separate Interface [Fow03,
p. 476]) that integrate certain data stores. These mappings, together with the generic API,
reside in the data access part of the infrastructure access sublayer.
The API for the storage of these domain objects is structured according to their grouping

introduced above. For each domain object, an interface definition contains the necessary
methods for storing an object to a data store. Further operations include retrieving, updating

57



7 System Design

and deleting a domain object so that each interface contains all CRUD1 methods. An exemplary
API for loading and storing of entries of the list of publishers is outlined in figure 7.8.

+addNewEntity(UserId subscriberId, LopEntry entry)
+deleteByNaturalId(UserId publisherId, UserId subscriberId)
+updateEntity(UserId subscriberId, LopEntry entry)
+getByNaturalId(UserId publisherId, UserId subscriberId) : LopEntry
+containsEntity(UserId publisherId, UserId subscriberId) : boolean

LopEntryDao

Visual Paradigm for UML Standard Edition(University Erlangen-N??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????)

Figure 7.8: An exemplary data access interface for loading and storing entries of the list of
publishers

The collection of interfaces forming the data access API is included in a single OSGi bundle. It
contains a dependency on the domain model bundle described above. Other bundles requiring
data access only depend on the API bundle and not on a concrete implementation of it.
The first implementation of the data access API is an in-memory storage that doesn’t

permanently save objects to background storage but only keeps them in transient memory. It
uses list data structures to store objects, which are not indexed at all but scanned, if an object
with a given key needs to be retrieved. This implementation serves as a dummy for testing
purposes. It is packaged into an OSGi bundle that requires the domain model bundle and the
data access API bundle.

OSGi Container

Service 

Registry

dep. dep.
data access 

API

register

implementation

as service

import

registered

service

bundle A
in-memory 

implementation

Figure 7.9: Decoupling of interface and implementation instrumenting the OSGi service registry

Furthermore, this bundle exports the implementations of the API interfaces to the OSGi

service registry as depicted in figure 7.9. OSGi allows the registration of a service using the
interface as a key that is implemented by the service. Other bundles, requiring data access for a
domain object, import a service by passing this interface as an argument. In the example, bundle
A thus obtains a reference to the service implementation without being coupled to in-memory

1 Create, Read, Update, Delete

58



7.3 Infrastructure Access Sublayer

implementation. Both bundles only depend on the data access API bundle. This constitutes a
vivid example of how OSGi fosters the decoupling of bundles and thus reduces complexity.

Another implementation of the data access API might be provided by a bundle implementing
object-relation mapping. For example, Hibernate1 may be used to describe a mapping from
domain objects to a relational database schema in a declarative way. Arbitrary other mapping
frameworks like Toplink2, iBatis3 or Apache OJB4 may be added.

7.3.2 Transfer Access

Another infrastructural part needed for DEUS are communication protocols. Since a design
objective was to not be coupled to specific communication protocols, a layer of indirection
is introduced. This layer takes calls from the DEUS Soul sublayer, chooses a communication
protocol, and sends the call in form of a message to the DEUS account of the recipient. If a
message is received over a communication channel, this message is translated to a call to the
Soul instrumenting a registered callback. The artifacts exchanged between the transfer core
and any protocol bindings are abstracted as messages. The calls between the transfer core and
the Soul sublayer are abstracted as commands.
Figure 7.10 outlines the architecture of this transfer access sublayer instrumenting an

exemplary protocol binding. The sublayer implements a plug-in architecture, where bindings to
arbitrary protocols can be registered to the TP Binding Registry. Each transfer protocol binding
forms its own OSGi bundle and thus can be deployed and started at runtime. During start
up, it queries the service registry for the TP Binding Registry being exported as a service by the
transfer core sublayer. The plug-in subsequently registers itself as a transfer protocol binding
instrumenting this registry and is instantly available.
The core part of the transfer access sublayer offers the conceptual interface send command

to the DEUS Soul sublayer. Different subsystems that require interaction with other DEUS

accounts instrument this exported interface. Command Sender receives the calls and negotiates
the transfer protocol to be used.
Therefore, the list of supported protocols is retrieved from the receiver of the command by

using the remotely exported interface negotiate TP. These protocols are subsequently matched
with the ones supported by the local DEUS node and a common transfer protocol is chosen.
Both communication partners have priorities attached to their supported transfer protocols

1 Open Source Java Persistance Framework, http://www.hibernate.org
2 http://www.oracle.com/technology/products/ias/toplink
3 http://ibatis.apache.org
4 http://db.apache.org/ojb

59



7 System Design

Soul

Transfer Core

   Exemplary TP Binding

TP Binding
Registry

TP Negotiation

TP specific
ID Mapper

Message
Sender

Command
Sender

Sub-
scription    

Command
Dispatcher

Repatriation   
Hub

Publication    Contri-
bution

Message
Receiver

Message
Listener

send message

receive command

register

resolve
TP ID

negotiate
TP

receive message register TP Binding

send command

Visual Paradigm for UML Standard Edition(University Erlangen-N??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????)

Figure 7.10: The architecture of the transfer access sublayer including an exemplary protocol
binding

which are taken into account during protocol negotiation. After registration, protocol bindings
are instantaneously available for protocol negotiation. Currently, transfer protocol negotiation
is currently repeatedly done for each sent command. This results in the ability to register and
unregister protocol bindings at arbitrary points in time.

Subsequently, the user ID of the remote DEUS account is resolved to the protocol-specific ID
of the negotiated transfer protocol using the remotely offered interface resolve TP ID. Following
the Command Message pattern in [HW03, p. 145], the command to send and its parameters are
marshaled and included in a message object. The send message interface of the chosen transfer
protocol binding is thereupon used to deliver the message.
Registered protocol bindings are actively listening for remote messages being sent by other

DEUS accounts. If a message is received by a binding, it invokes a callback to the receive message
interface of Transfer Core. The message is unmarshaled, the contained command is extracted
and passed to the Soul sublayer using its interface receive command. Passing a command is
implemented as a method invocation of a Soul subsystem. Sending commands and receiving
messages is further elaborated in the following sections where the current implementation is
outlined.

60



7.3 Infrastructure Access Sublayer

7.3.2.1 Sending Implementation

An exemplary sending of a message for requesting a subscription is shown in figure 7.11. Prior
to any sending, a protocol binding must register itself at the TP Binding Registry. Subsequently,
the protocol is made available for being chosen during transfer protocol negotiation.

Soul Transfer Core Arbitrary Protocol 
Binding

RegistratorMessage
Sender

TP Binding
Registry

User ID
Mapper

Request
Subscription

Message

TP NegotiationSubscriptionCommandSenderSubscription

Alice
2: add TP

13: loopback user ID of remote user

10: loopback TpID of local user

7: "loopback"

1: register protocol binding

16: send message

15: get Message Sender for "loopback"

14: set recip. TpID

12: map user ID to TpID of remote user

11: set sender TpID

9: map user ID to TpID of local user

8: get ID Mapper for "loopback"

5: 

6: negotiate TP

4: subscribeToPublisher

3: subscribeToPublisher

Visual Paradigm for UML Standard Edition(University Erlangen-N??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????)

Figure 7.11: Exemplary sending a message for requesting a subscription

The sending is initiated by an actor that calls subscribeToPublisher on the Subscription
subsystem. This triggers a call to a command sender that is responsible for sending commands on
behalf of the Subscription subsystem. This component creates a new RequestSubscriptionMessage

which is agnostic of the transfer protocol over which it will be sent. Subsequently, the transfer

61



7 System Design

protocol is negotiated by using the component TP Negotiation as described above. The result of
the depicted negotiation is the choice of using the apb1 protocol.
In the next phase, the DEUS user IDs need to be mapped onto IDs specific to the chosen

protocol. This is supported by the component User ID Mapper that is registered at the TP Binding

Registry during protocol binding registration. First, the sender’s user ID is mapped to its transfer
protocol specific ID (TpID) and injected into the constructed message. Mapping the recipient’s
user ID to a protocol-specific ID requires a resolution process involving remote communication
with the recipient’s DEUS account. This can be accomplished using the metadata discovery
process introduced in section 5.2. Furthermore, the protocol-specific ID can already be obtained
during protocol negotiation. However, this is not implemented yet. After setting the received
transfer protocol ID, the Message Sender of the negotiated protocol is obtained from the TP

Binding Registry. It has been registered there during protocol binding registration and provides
a protocol-specific way of sending the message.
In conclusion, message sending is initiated by a call from the Soul sublayer to a Command

Sender which creates a message. Subsequently, a message is created, a transfer protocol binding
chosen, and the user ID is mapped to transfer-protocol specific ones. For sending the message,
it is passed ‘further down the stack’ to the chosen protocol binding.

7.3.2.2 Receiving Implementation

Receiving of an exemplary Subscription Request Granted Message is outlined in figure 7.12. Prior
to any communication, a protocol binding must be started which results in registering it at
the TP Binding Registry. Subsequently, a callback reference to Message Sender residing in transfer
core is obtained. Furthermore, the subsystems that export methods to peers must register
themselves as callbacks at the Soul Callback Registry of the transfer core sublayer.
Any protocol binding actively listens for incoming messages. If a message is delivered to

the binding, the Message Receiver reference is obtained from the Registrator where it has been
stored during registration. Subsequently, the method receive of Message Receiver is called and the
received message is passed. The Message Receiver then retrieves the callback to the Subscription
subsystem that has been registered previously. The reference to Subscription is subsequently
used to dispatch the message to a call to the subscriptionRequestGranted method. This is one of
the methods that the Subscription subsystem exports to peers.

1 This is just an acronym for ‘arbitrary protocol binding’.

62



7.3 Infrastructure Access Sublayer

SoulTransfer CoreArbitrary Protocol 
Binding

Arbitrary
Protocol

Soul Callback
Registry

Message ReceiverRegistratorMessage
Listener

TP Binding
Registry

Subscription

5: get Message Receiver

4: deliver message

2: return Message Receiver

8: call subscriptionGranted

7: get Subscription callback

3: register as callback

6: receive(Subscription Granted Message)

1: register protocol binding

Visual Paradigm for UML Standard Edition(University Erlangen-N??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????)

Figure 7.12: Receiving an exemplary Subscription Request Granted Message

To conclude, Soul subsystems can export methods to peers by registering itself as callback in
the transfer core subsystem. Message Receiver subsequently dispatches incoming messages and
instruments the registered callback for invocations to the exported methods of Soul subsystems.

7.3.2.3 Loopback Binding

During transfer protocol negotiation, a detection reveals whether the DEUS account of the
communication counterpart resides on the same DEUS node. This detection compares the server
base URL of the sender and the receiver, provided that both user IDs are of type UserURL. If
both base URLs match, the accounts reside on the same node since a node is uniquely identified
by its server base URL.

In this case, a simple protocol binding is chosen by the negotiation component that implements
node-local loopback communication. As with more complex bindings, the loopback binding is
registered as a plug-in. It is employable during the repatriation phase, if the DEUS accounts of
the Information Provider and the Concerned Person reside on the same node. Just as well, it
can be used during the publication phase, in case the accounts of the Concerned Person and
the Information Consumer share a node. The basic way the loopback binding works is outlined
in figure 7.13.

On choosing the loopback protocol binding for message sending, the Loopback Message Sender

is retrieved from the TP Binding Registry. Subsequently, the message is sent to the Loopback

Message Sender which forwards it to Loopback Message Forwarder. This component resembles the

63



7 System Design

Transfer Core Loopback Protocol Binding Transfer Core

~= Message 
Listener

RegistratorTP Binding
Registry

Command Sender Message ReceiverLoopback
Message
Forwarder

Loopback
Message
Sender

Loopback
User ID
Mapper

1: get Message Sender for "loopback"

2: send message

4: receive message

3: forward message

Visual Paradigm for UML Standard Edition(University Erlangen-N??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????)

Figure 7.13: The basic functionality of the loopback protocol binding

conceptual component Message Listener in the above description of receiving a message. Loopback

Message Forwarder retrieves the reference to Message Receiver from the Registrator what is omitted
in the figure. It then calls Message Receiver residing in transfer core. The transfer protocol ID
of the loopback protocol binding simply consists of a node-locally unique username. It not
necessarily has to coincide with the login username or the username part of a UserURL.

7.3.2.4 XMPP Binding

A more complex transfer protocol binding is needed if communication bridges different DEUS

nodes. One candidate fulfilling the requirements, described in section 4.6.2, is XMPP. The
basics of XMPP were already described in section 5.3.2. For implementing trust relationship
management, the presence subprotocol of XMPP with its subscription management facility
was used. On requesting the establishing of a trust relationship, a presence packet of type
‘subscribe’ is sent to the communication counterpart. Offering of a relationship initiated by the
Concerned Person is not yet supported by the XMPP binding. On granting the establishing of
a relationship, another presence packet of type ‘subscribed’ is sent. Otherwise, the presence
packet type is ‘unsubscribed’. Sending Digital Cards instruments the messaging subprotocol of
XMPP but requires XML serialization of the Digital Card.

However, the XMPP binding requires a closer investigation of the XMPP protocol. Work on
this binding is subsequently deferred to the future, as described in chapter 9.

7.3.2.5 Conclusion

The described approach guarantees the complete decoupling of the DEUS Soul from concrete
communication protocols. Arbitrary bindings to communication protocols can be plugged in

64



7.4 Soul Sublayer

during runtime and are immediately available for usage. The registration of bindings, marshaling
of commands to send and unmarshaling of received messages is done in a communication
abstraction sublayer called transfer core.
It delegates sending of messages to registered transfer protocol bindings after negotiating

the protocol with the communication counterpart. All registered bindings listen on the related
communication channels for incoming messages, which are relayed to transfer core to be
delivered to the Soul.
A local loopback protocol binding is defined for communication between DEUS accounts

on the same node. For transferring messages to accounts residing on another DEUS node, a
binding to XMPP is provided. Instrumenting the plug-in architecture, bindings to arbitrary
other communication protocols can be defined and registered during runtime. The defined
bindings together with the transfer core sublayer constitute the transfer access subsystem.

7.4 Soul Sublayer

The Soul sublayer clearly manifests the horizontal decomposition into subsystems with a
well-defined scope of work. In addition to decomposing DEUS in a horizontal and a vertical
manner, several cross-cutting concerns have been identified resulting in lateral subsystems.
Soul subsystems export functionality to the presentation tier including user interfaces and

neighbor systems. Furthermore, Soul subsystems export functionality to other subsystems and
to other DEUS peers1. The described adjacent parts only gain access to required functionality
by separating it into interfaces and exporting them to the distinct parts. These interfaces are
exported as OSGi services.

OSGi cannot restrict bundles to only import specific services. Rather, all services registered
in the service registry may be used by any bundle. However, to at least indicate the intended
importing bundle, a naming convention for services is introduced. Service interfaces exported by
a Soul subsystem to the presentation tier are named <Subsystem>ExportedToClient. Functionality
exported to other subsystems is bundled in an interface named <Subsystem>ExportedToSubsystems.
Methods offered to be remotely called by other DEUS peers are collected and named <Sub-

system>ExportedToPeers. These interfaces are used by the presentation tier, respectively other
subsystems to import needed services from the service registry. Interfaces exported to peers are
registered with the transfer access sublayer as callbacks to the subsystems. Thus, a dependency
from the transfer access sublayer bundle to any Soul subsystem bundle is avoided.

1 DEUS peers constitute accounts residing on the same or a different node.

65



7 System Design

An example Soul subsystem called ‘Foo’ is outlined in figure 7.14 together with the three
types of exported functionality. Furthermore, the registration of a subsystem as a callback to
the transfer access core sublayer is depicted. It therefore instruments the SoulCallbackRegistry and
registers itself under the interface FooExportedToPeers. If a message is received by any transfer
protocol binding plug-in, the component MessageReceiver retrieves the registered subsystem.
Subsequently, the received message is dispatched to a call to the Foo subsystem.

Figure 7.14: The exemplary subsystem Foo and its exported interfaces

In the following figures describing the Soul subsystems, the callback mechanism to the
transfer access sublayer, any ports, and explicit interface exports are omitted. The subsystem’s
main interface together with the implementation are abstracted to a UML component. The
interface exported to clients is depicted above the main interface and the interface exported
to subsystems to the left. The interface exported to peers is contained in the transfer access
sublayer.

66



7.4 Soul Sublayer

7.4.1 Lateral Barker

System-user interaction was decomposed into the lateral Barker subsystem. The component
Barker encapsulates system-to-user interaction by providing the presentation layer with elements,
that require the user’s attention. Two lists of attention elements are managed: The first list
collects attention elements not yet noticed by the user, the second list contains already noticed
ones. For keeping the elements persistent, the Barker subsystem instruments the data access
sublayer. The attention elements and the basic distinction between notice elements and pleas
is described in section 7.2.4.

Barker

+process(Decision)

<<Interface>>
DecisionProcessor

<<component>>
DecisionProcessor

+addUnnoticedAttentionElement(AttentionElement)

<<Interface>>
BarkerExportedToSubsystems

<<component>>
Barker

+noticeAttentionElement(AttentionElement)
+getUnnoticedAttentionList()
+getNoticedAttentionList()

<<Interface>>
BarkerExportedToClient

Visual Paradigm for UML Standard Edition(University Erlangen-N??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????)

Figure 7.15: The lateral Barker subsystem for user-system-interaction

The Barker component provides other subsystems with a method to add attention elements to
the unnoticed attention list. This method is included in the interface BarkerExportedToSubsystems.
To the presentation tier, methods to retrieve the two attention lists are offered. If a user marks
an attention element as noticed, the method noticeAttentionElement moves it to the list of noticed
attention elements. These methods are contained in the interface BarkerExportedToClient.

A further distinction needs to be made between noticing a plea and deciding about it. While
noticing of it is done by the Barker component, decision making is processed by the component
DecisionProcessor. It offers the method process(Decision) to the presentation tier and thus embodies
user-to-system interaction. A Decision constitutes a plea together with a boolean value that
reflects the decision made about the plea. DecisionProcessor delegates the requested processing
to decision processors that were previously registered by other Soul subsystems. Since decision
processing is closely related to certain subsystems, decision processors reside at these subsystems
to achieve high cohesion. DecisionProcessor constitutes a facade [GHJV95, p. 185] for processing
various kinds of decisions. Decision processing is explained together with the subsystems that
handle related decisions.

67



7 System Design

7.4.2 Lateral Gatekeeper

By bundling methods for registration of users and logging them in and out of the DEUS system,
the Gatekeeper subsystem was created. It depends on the data model module and on the data
access sublayer for storing registered account information and login state.

7.4.2.1 Registration of User Accounts

For user sign up, the Registrator component offers methods for registering and unregistering a
user. It is outlined in figure 7.17. The method register takes an instance of RegistrationInformation

as an argument. This object contains the local username, a password, the desired type of user
ID, and user metadata that was described in section 7.2.1. Furthermore a set of distribution
roles1 is included, that should be assumed by the account to register. These can either be
chosen by the user during sign up or the DEUS node is preconfigured with a collection of roles
to be assumed by new accounts.

On calling the method register, a user ID of the desired type is generated by delegating to an
implementation of the strategy [GHJV95, p. 315] interface UserIdGenerator. This is outlined in
figure 7.16 where the user Alice registers a DEUS account. Currently, the generation of UserUrls

is supported by using a preconfigured server base URL and appending the local username chosen
during registration. Subsequently, an account is created and persisted by instrumenting the
data access sublayer.

XMPP binding : Publication    Transfer Access : DistributionRoleSetupData Access : UserIdGenerator

Alice

 : Registrator

9: setup XMPP account

8: notify of user registration

7: setup role CP

2: register as role setup callback

1: register as user registration observer

6: setup distribution roles

5: persist

4: generate user ID

3: register

Visual Paradigm for UML Standard Edition(University Erlangen-N??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????)

Figure 7.16: The registration of a user and subsequent actions of role setup and observer notifica-
tion

1 See section 4.2 for more information about distribution roles.

68



7.4 Soul Sublayer

Setting up a distribution role may require rather sophisticated operations like the creation of
DEUS artifact data structures. Thus this functionality is factored out to DistributionRoleSetup

which is presented in figure 7.17. Artifacts associated with distribution roles are related to
specific Soul subsystems. Thus, role initialization procedures are bundled with these subsystems
to maintain high cohesion. Subsequently, callbacks are registered by these subsystems on start
up that are used by DistributionRoleSetup.
Accordingly, the subsystem Contribution is responsible for setting up the distribution

role Information Provider. Each of the subsystems Repatriation Hub, PIF-Governing, and
Publication offers a callback for collectively setting up the role Concerned Person. Finally,
the role Information Consumer is governed and set up by the subsystems Subscription and
DIF-Governing. Figure 6.2 outlines the relation of subsystems to distribution roles.

The distribution role setup callbacks are exemplarily outlined by the subsystem Publication
registering a callback in step 2 in the above diagram. After account creation, each registered
callback for each desired distribution role is used to setup the required data structures.
Subsequently any observers [GHJV95, p. 293] that previously subscribed to user sign up

events (in step 1 in the above figure) are notified and passed the ID of the new user account.
One of these observers is a component of the transfer access core layer that broadcasts this
event to callbacks of all transfer protocol bindings. Notification of user sign ups may be needed
by transfer protocols that require a protocol-specific account to be created, like the XMPP

binding does. On adding a new transfer protocol binding that requires user accounts, these
accounts must be created for all users of the DEUS node. While this is not included in the
reference implementation, it is deferred to the future.

7.4.2.2 Unregistration of User Accounts

Unregistration of a user removes the Account entity from the data store and tears down any
distribution roles the account assumed. This again involves the callbacks registered by the
Soul subsystems which also provide support for distribution role teardown. It furthermore
may include the termination of existing trust relationships being conceptually connected to the
torn down distribution role. Subsequently, all observers listening for account unregistration are
notified, among other things resulting in transfer protocol accounts to be removed.

7.4.2.3 Changing of Account Data

The component AccountManager of the gatekeeper subsystem provides support for changing
user accounts after sign up and is outlined in figure 7.17. This includes changing of user
metadata and password as well as adding and removing roles assumed by the account. The

69



7 System Design

same mechanisms as during account registration and unregistration are applied for distribution
role setup and teardown.

7.4.2.4 Logging Users In and Out of DEUS

The Cerberus1 component provides the system with a facility for logging users in and out of their
accounts. It is outlined in figure 7.17. After checking the login credentials, the logged in state
of the Account entity is updated in the backing data store. As with the Registrator, the Cerberus

component provides interested subsystems with the ability to listen for users logging in and out.
This can be used by transfer protocol bindings to log in the users into their protocol-specific
accounts after DEUS login. For logging a user out of its DEUS account, the login state is
updated and persisted again and, in turn, login state listeners are notified.

7.4.2.5 Elements of the Gatekeeper Subsystem

The functionality of the Gatekeeper subsystem can be divided into four main scopes of work.
The registration part copes with the registration of users and the setup of their accounts.
Observers can be added to be noticed of user sign up events. This part is outlined in figure 7.17
in the upper left corner. Interfaces being implemented by other subsystems like observer
interfaces are displayed yellow. The second part of the Gatekeeper functionality copes with the
setup of distribution roles, outlined in the lower left corner. Logging users in and out of DEUS

is done by a the login part and its Cerberus component. The management of accounts after sign
up is accomplished by the account management functionality of the Gatekeeper subsystem.

7.4.3 The Contribution Subsystem

The Soul subsystem Contribution supports the functional role Contributor2 and is outlined
in figure 7.18. It offers a facility to import Digital Cards into the DEUS system by exporting
the method forwardToCp to clients. The parameters of the method include the Digital Card to
contribute and the user IDs of the Information Provider and the Concerned Person to whom
the contribution is addressed. Subsequently, the Digital Card is forwarded to the DEUS account
of the Concerned Person which constitutes the repatriation phase. Communication during this
phase is supported by the transfer access sublayer.
For receiving the decision, whether the Digital Card to repatriate was accepted by the

Concerned Person, the component Contributor exports an interface to DEUS peers. This interface

1 Cerberus is the name given to the entity which, in Greek and Roman mythology, is a multi-headed dog which
guards the gates of Hades, to prevent those who have crossed the river Styx from ever escaping.

2 See section 4.2 for more information about functional roles.

70



7.4 Soul Sublayer

-localUsername : string
-password : string
-userMetadata : UserMetadata
-desiredUserIdType : UserIdType
-distributionRoles : set<DistributionRole>

RegistrationInformation

+userRegistered(UserId userId)
+userUnregistered(UserId userId)

<<Interface>>
UserRegistrationStateObserver

+generateUserId(UserIdType type, String localUsername)

<<Interface>>
UserIdGenerator

+register(RegistrationInformation info)
+unregister(String localUsername)
+existsLocalUsername(String localUsername) : boolean
+addUserRegistrationStateObserver(UserRegistrationStateObserver obs)
+removeUserRegistrationStateObserver(UserRegistrationStateObserver obs)

<<Interface>>
Registrator

<<component>>
Registrator

+setupRole(DistributionRole role, UserId userId)
+teardownRole(DistributionRole role, UserId userId)
+addRoleSetupCallback(DistributionRole role, DistributionRoleSetupCallback cb)
+removeRoleSetupCallback(DistributionRole role, DistributionRoleSetupCallback cb)

<<Interface>>
DistributionRoleSetup

+setupRole(DistributionRole role, UserId userId)
+teardownRole(DistributionRole role, UserId userId)

<<Interface>>
DistributionRoleSetupCallback

<<component>>
DistributionRoleSetup

<<component>>
Cerberus

+login(LoginCredentials cred) : UserId
+logout(String localUsername)
+addUserLoginStateObserver(UserLoginStateObserver obs)
+removeUserLoginStateObserver(UserLoginStateObserver obs)

<<Interface>>
Cerberus

-localUsername : string
-password : string

LoginCredentials

+loggedIn(UserId userId)
+loggedOut(UserId userId)

<<Interface>>
UserLoginStateObserver

+changePassword(String localUsername, String newPassword)
+addRole(String localUsername, DistributionRole role)
+removeRole(String localUsername, DistributionRole role)

<<Interface>>
AccountManager

<<component>>
AccountManager

Registration Login

Account ManagementRole Setup

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>

Visual Paradigm for UML Standard Edition(University Erlangen-N??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????)

Figure 7.17: The basic elements of the Gatekeeper subsystem

includes the methods contributionAcknowledged and contributionDenied. Both take the ID of the
repatriated Digital Card as an argument and are remotely called by the DEUS account of the
Concerned Person after deciding about the acceptance.

7.4.4 The Repatriation Hub Subsystem

The described forwarding of a contributed Digital Card results in a call to the method accept

of the subsystem Repatriation Hub that is exported to peers. This subsystem supports the
functional role Repatriation Authority with an entry point for contributed Digital Cards and is
outlined in figure 7.19. Two different cases must be distinguished when receiving a Digital Card
by the accept method: A user may contribute information about himself/herself instrumenting
the Contribution subsystem. The loopback binding subsequently forwards the Digital Card
to the Repatriation Hub subsystem. Here, the RepatriationHub component detects that the

71



7 System Design

Transfer Access

Contribution

+contributionAcknowledged(DigitalCardId id)
+contributionDenied(DigitalCardId id)

<<Interface>>
ContributorExportedToPeers

+forwardToCp(DigitalCard dc, UserId contrib, UserId cp)

<<Interface>>
ContributorExportedToClient

<<component>>
Contributor

Figure 7.18: The Contribution subsystem and its exported interfaces

Information Provider of the Digital Card matches the Concerned Person by inspecting the
Digital Card’s primary key. Thus, the Digital Card is directly added to the Personal Information
File as it will be described in the next section.

Repatriation Hub

Transfer Access

+accept(DigitalCard dc)

<<Interface>>
RepatriationHubExportedToPeers

<<component>>
ContributionDecisionProcessor

<<component>>
RepatriationHub

Figure 7.19: The Repatriation Hub subsystem and its exported interfaces

If the Digital Card is contributed by another DEUS account, the Information Provider of
the Digital Card does not coincide with the Concerned Person. Thus, a decision about the

72



7.4 Soul Sublayer

acceptance of the repatriated Digital Card is required. It depends on the implemented trust
model, introduced in section 4.4.1.2, if a plea for approving the Digital Card is displayed to the
user. Currently, establishing trust relationships for the repatriation phase is not possible. Thus,
each Digital Card contributed by a foreign account is presented to the user for acceptance by
instrumenting the Barker subsystem. A plea attention element for accepting the contribution
is added to the unnoticed attention list.

The processing of the decision made about this plea is contained in the component Contribu-

tionDecisionProcessor. On a positive acceptance decision, the contributed Digital Card is added
to the Personal Information File and the method contributionAcknowledged of the Contribution
subsystem is invoked. On a negative acceptance decision, the method contributionDenied is
remotely called. Both invocations instrument the transfer access sublayer for communication
with the other DEUS peers.

7.4.5 The PIF-Governing Subsystem

The subsystem PIF-Governing is responsible for managing the Personal Information File. As
depicted in figure 7.20, it exports the method getPersonalInformationFile to the presentation layer.
This allows a client to get read access to the Personal Information File. The method assimi-

lateRepatriatedDigitalCard is offered to subsystems and consumed by the subsystem Repatriation
Hub. On calling this method, a strategy [GHJV95, p. 315] is used that encapsulates different
ways of merging new Digital Cards. The current implementation is SimpleAppendAssimilation-

Strategy that just appends the Digital Card to the Personal Information File. In case it already
exists, an exception is thrown. The assimilation strategy returns a patch that manifests the
difference between the old and the new Personal Information File state. Subsequently, the
Personal Information File is updated in the backing data store.

PIF Governing

+assimilateRepatriatedDigitalCard(DigitalCard dc)

<<Interface>>
PifGovernorExportedToSubsystems

+getPersonalInformationFile()

<<Interface>>
PifGovernorExportedToClient

<<component>>
PifGovernor

Visual Paradigm for UML Standard Edition(University Erlangen-N??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????)

Figure 7.20: The PIF-Governing subsystem and its exported interfaces

73



7 System Design

7.4.6 The Publication Subsystem

The Publication subsystem offers support for publishing changes and building up pub/sub trust
relationships. It exports the method getListOfSubscribers to the presentation tier, displayed in
figure 7.21. The second method being called by clients is notifySubscribers. Different models for
the point in time of publication can be thought of. Either, publication is done automatically
after accepting a contributed Digital Card or it is only manually triggered by the user. In the
latter case, a list of patches to publish must be maintained. Instrumenting notifySubscriber an
individual subscriber group can be chosen to publish patches to. Since this method allows for
notifying individual groups, patch queues need to be administrated per subscriber group. DEUS

may process patch lists prior to publication to condense them by removing redundant changes.
Currently DEUS supports the manual triggering of publication by invoking notifySubscribers. No
maintaining of patch queues is supported.

Transfer Access

Publication

+addSubscriber(UserId subscriber, UserMetadata subscriberMetadata)
+deleteSubscriber(UserId subscriber)
+subscriptionOfferConfirmed(UserId subscriber)
+subscriptionOfferRepelled(UserId subscriber)

<<Interface>>
PublisherExportedToPeers

+getListOfSubscribers()
+notifySubscribers(Patch patch)
+notifySubscriber(Patch patch, UserId subscriber)
+inviteSubscriber(UserId subscriber)
+cancelSubscription(UserId subscriber)

<<Interface>>
PublisherExportedToClient

<<component>>
Publisher

<<component>>
SubscriptionRequestDecisionProcessor

<<use>>

Visual Paradigm for UML Standard Edition(University Erlangen-N??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????)

Figure 7.21: The Publication subsystem and its exported interfaces

Furthermore, DEUS supports the setup and teardown of publication relationships either
initiated by the publisher or by the subscriber1. For the former, the Publication subsystem
exports the method inviteSubscriber as well as cancelSubscription to the client. Inviting a subscriber

1 See section 4.4.1.3 for further information about publication trust relationships

74



7.4 Soul Sublayer

results in a message to be sent to him/her, offering a subscription, which can either be confirmed
or repelled by the subscriber. Subsequently the subscriber notices the publisher of this decision
by remotely calling the method subscriptionOfferConfirmed or subscriptionOfferRepelled. In the former
case, a publication relationship is built up by adding the subscriber to the list of subscribers.
This inter-peer communication is accomplished using the send command interface of the transfer
access sublayer. Canceling a subscription entails a notice message to be sent to the subscriber
potentially demanding the deletion of the Foreign Information File. On publisher side the
subscriber is removed from the list of subscribers.

A publication connection can also be requested by the subscriber. Therefore, the subscriber
remotely invokes addSubscriber on the Publication subsystem. This results in a plea displayed
to the user instrumenting the Barker subsystem. A decision made by the user is handled
in the SubscriptionRequestDecisionProcessor. This component either calls grantSubscriptionRequest

resulting in the subscriber being added to the list of subscribers. If the decision is negative,
denySubscriptionRequest of the Publisher component is called. Both methods subsequently result
in signaling the decision to the subscriber account instrumenting the transfer access sublayer.

7.4.7 The Subscription Subsystem

Publication trust relationships are logically built up between the functional roles Publisher and
Subscriber, embodied by the Publication and the Subscription subsystems. While the part of
the Publication subsystem in pub/sub connection management has been elaborated on before,
this section describes the Subscription subsystem, outlined in figure 7.22.
In parallel to the Publication subsystem, it offers the method getListOfPublishers to the

presentation tier. Furthermore, the method subscribeToPublisher for requesting a subscription is
exported to clients. A call to this method entails the sending of a message to the publisher
instrumenting the send command interface of the transfer access sublayer. After the decision
about the subscription request is made on publisher side as described above, the decision is sent
to the subscriber. This results in an invocation of either the method subscriptionRequestGranted

or subscriptionRequestDenied the Subscription subsystem exports to peers. On confirmation of the
connection, it is built up on subscriber side by adding the publisher to the list of publishers.
Teardown of a subscription relationship initiated by the subscriber is triggered by a client
calling unsubscribeFromPublisher.
A publisher offering a subscription results in a remote call to the method addPublisher on

subscriber side. A plea is added to the Barker subsystem and thus presented to the user.
The decision about this plea is handled by the SubscriptionOfferDecisionProcessor. Depending
on the decision, it either calls confirmSubscriptionOffer or repelSubscriptionOffer on the Subscriber

75



7 System Design

Transfer Access

Subscription

+getListOfPublishers()
+subscribeToPublisher(UserId publisher)
+unsubscribeFromPublisher(UserId publisher)

<<Interface>>
SubscriberExportedToClient

<<component>>
Subscriber

<<component>>
SubscriptionOfferDecisionProcessor

+addPublisher(UserId publisher, UserMetadata publisherMetadata)
+deletePublisher(UserId publisher)
+subscriptionRequestGranted(UserId publisher)
+subscriptionRequestDenied(UserId publisher)
+update(Patch patch)

<<Interface>>
SubscriberExportedToPeers

<<use>>

Visual Paradigm for UML Standard Edition(University Erlangen-N??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????)

Figure 7.22: The Subscription subsystem and its exported interfaces

component. The former method adds the publisher to the list of publishers, and both methods
report the decision to the publisher by sending a notifying message. The publisher demanding the
termination of the subscription results in a call to the remotely exported method deletePublisher.
Furthermore, the Subscription subsystem exports the method update to other DEUS peers.

This method is called by the transfer access sublayer after receiving an update message containing
a patch that promotes a change to a Personal Information File. The Subscription subsystem
checks if the originator of the message is contained in the list of publishers. Subsequently, the
transferred patch is merged to the publisher’s Foreign Information File using the DIF-Governing
subsystem.

7.4.8 The DIF-Governing Subsystem

The DIF-Governing subsystem is responsible for managing the Distributed Information Folder
of an Information Consumer and depicted in figure 7.23. By its functionality, it supports the
functional role Retriever while only a part of it is yet implemented. Therefore, it offers the
method getDigitalCardIdsInFif that returns a list of the IDs of all Digital Cards contained in
a Foreign Information File. By furthermore instrumenting the method getDigitalCardInFif, a

76



7.5 Conclusion

client can access a Digital Card with a given ID. Currently, methods for searching a Foreign
Information File are not implemented but deferred to future work.

DIF Governing

<<component>>
DifGovernor+applyPatch(Patch patch)

<<Interface>>
DifGovernorExportedToSubsystems

+getDigitalCardIdsInFif(UserId publish...
+getDigitalCardInFif(DigitalCardId id)

<<Interface>>
DifGovernorExportedToClient

Figure 7.23: The DIF-Governing subsystem and its exported interfaces

To other subsystems, the method applyPatch is exported which is called after a patch from a
publisher is obtained. This method applies the transferred patch to the Foreign Information
File.

7.5 Conclusion

By packaging the modules obtained by decomposing DEUS as OSGi bundles, clear module
boundaries and interfaces can be enforced during runtime. Functionality offered to other
subsystems, to clients or to other DEUS peers is exported as OSGi services. The DEUS system
follows a three-tier architecture, where the business logic and techniques for integrating data
stores and communication protocols are encompassed in the core tier. The subsystems contained
in the Soul sublayer collaborate in providing the full functionality of the DEUS Contribution-
Repatriation-Publication Chain. The scope of work of each subsystem as well as its interfaces
and exported services were described using UML class and component diagrams.

77





8 Implementation Issues

One of the objectives of DEUS was to be independent of any platform. This was achieved by
choosing Java as the programming language resulting in the possibility to run the program
wherever a Java virtual machine is installed. While a specific programming language was
chosen DEUS itself is not dependent on Java. The DEUS functionality can also be implemented
in a different language. All used techniques for inter-peer communication are also available
for other programming languages. The proposed reference implementation is compatible with
implementations written with different languages running on other nodes.

For supporting the build process, Maven is used. Maven provides a declarative configuration
of a predefined build life cycle and adheres to ‘convention over configuration’. Furthermore, the
Spring Framework was instrumented to introduce Inversion of Control and, thus, fosters loose
coupling. The Spring sub-project Spring Dynamic Modules provides an integration of OSGi

with declarative importing and exporting of OSGi services. The whole application is deployed
as OSGi modules into the Spring DM application server.

8.1 Build Environment

In the following, it is outlined how Maven as the used build tool was applied for supporting the
build process of the DEUS system with its multiple modules.

8.1.1 Maven as Build System

During build time, Maven 21 was used as a build tool. The principles of Maven are adoption
of a predefined build process and ‘convention over configuration’ [vZB07]. A Maven project is
declaratively configured by using the Maven Project Object Model. Projects are identified by
Maven coordinates, their dependencies are managed by Maven. A default project structure is
provided by Maven, together with a build cycle that can be extended by plug ins. Multi-module
projects and project inheritance support the creation of enterprise-level software with multiple
modules.

1 http://maven.apache.org

79



8 Implementation Issues

Further information about Maven can be found in chapter A in the appendix. There, more
details are provided about Maven coordinates, versioning of projects, dependency management,
project folder structure, the Maven build cycle, plug ins, the command line interface, and
multi-module projects.

8.1.2 DEUS Maven Project Layout

DEUS uses Maven as a build tool and all the features described in chapter A. The group
ID of all DEUS Maven modules is inf6.promed. Since Maven does not support hierarchical
artifact IDs, dashes were used to separate hierarchy levels. An exemplary coordinate of one of
the DEUS modules is inf6.promed:deus-core-access-transfer-plugins-xmpp:bundle:0.3-SNAPSHOT. This
coordinate addresses the XMPP protocol binding plug-in, packaged as OSGi bundle in version
0.3-SNAPSHOT.

Dependencies common to all submodules of DEUS include JUnit1 and the Spring Framework
Test component. Dependencies managed on behalf of the submodules, as described above,
include all intra-project dependencies. Furthermore the Spring Framework is included in the
managed dependencies.
The decomposition of the system into sublayers and subsystems is reflected by a special

folder structure. Inner nodes incorporate pom packaged projects, leafs incorporate OSGi bundles
with packaging type bundle. Each Maven module reflects its position in the folder tree by its
artifact ID. It constitutes the folder names on the path to the project root folder separated by
dashes. The DEUS project structure is outlined in figure B.1. All of the modules described
in chapter 7 are bundled as OSGi modules which is reflected by the project folder structure.
Furthermore, the root POM2 file and an exemplary POM file of the Gatekeeper subsystem can
be found in chapter B.

8.2 Spring Framework and Spring DM Server

The Spring Framework3 provides a lightweight Inversion-of-Control-container. Further features
include support for AOP4, abstraction of enterprise technologies like JMS, JMX5, and JCA6 and
an abstraction layer for data access. By its dependency injection facility, the Spring framework

1 http://www.junit.org
2 Project Object Model
3 http://www.springframework.org
4 Aspect-Oriented Programming
5 Java Management Extensions
6 Java Connector Architecture

80



8.2 Spring Framework and Spring DM Server

fosters low coupling between system components which are embodied by Spring beans. It eases
the development by providing autowiring of dependencies and declarative component detection
using Java annotations.

8.2.1 Spring Dynamic Modules

The Spring sub project Spring Dynamic Modules (DM) provides an integration for OSGi. Spring
beans can be exported as OSGi services in a declarative way. Importing of services from the
OSGi service registry creates Spring beans that can be directly injected into other beans.

Furthermore, the creation of a Spring application context is automated. Therefore, a bundle
from the Spring DM project is loaded into the OSGi container prior to application deployment.
This bundle detects Spring powered OSGi bundles by searching for Spring XML configuration files
in the folder /META-INF/spring/ of the JAR1 file. Any XML files that are found are subsequently
loaded and used to create an application context for this bundle.
Using Spring DM not only eases development, but also avoids any dependency on OSGi

interfaces by exporting POJOs2 as OSGi services in a declarative way. Furthermore, Spring DM
provides the facility of calling specially annotated methods directly after start up of the bundle.
Thus, the concept of a OSGi bundle activator is replaced by arbitrary classes implementing
start up and teardown methods.

8.2.2 Spring Framework Applied

For each OSGi bundle, the Spring configuration resides in the JAR file at /META-INF/spring/,
where several individual Spring configuration files are included in all.xml. The file /META-

INF/spring/deus/context.xml contains the context configuration. This includes the element
<context:annotation-config /> that enables the declarative configuration of dependencies using
Java annotations.

Get- or set-methods and class fields can be annotated with @Required to declare a required
dependency. Furthermore, the automatic wiring of dependencies without any necessary decla-
rations is enabled with the annotation @Autowired. Methods annotated with @PostConstruct or
@PreDestroy are executed by the Spring container after the object is configured, respectively before
it is destroyed. The configuration element <context:component-scan base-package="deus.core.soul"/>

enables the active detection of Java classes annotated with @Component. Annotated classes
below the given base package are added to the list of Spring beans without explicitly declaring

1 Java Archive
2 Plain Old Java Objects

81



8 Implementation Issues

them as beans in an XML configuration. These two configuration elements dramatically reduce
the need for XML configuration in favor of annotation-based configuration.
The following listing provides the class RegisterLoopbackTransferProtocol that registers the

loopback transfer protocol binding after the OSGi bundle is loaded. The class is automatically
added as Spring bean since it is annotated with @Component. Furthermore, its two dependencies
are autowired. Due to their annotations, the method register is called after class setup, the
method unregister prior to class tear down.

1 @Component

2 public class RegisterLoopbackTransferProtocol {

3

4 @Autowired

5 private ExportedTransferProtocolRegistry registry;

6

7 @Autowired

8 private TransferProtocol loopbackProtocol;

9

10

11 @PostConstruct

12 public void register () {

13 registry.registerTransferProtocol(loopbackProtocol);

14 }

15

16

17 @PreDestroy

18 public void unregister () {

19 registry.unregisterTransferProtocol(loopbackProtocol.getId ());

20 }

21

22 }

The file /META-INF/spring/deus/osgi.xml is also included in each bundle and specifies imported
and exported OSGi services. The following listing shows one exported and one imported OSGi

service. The first declaration exports the bean publisher under the given interface into the
service registry. The second statement imports a service with a given interface from the service
registry and makes it available as Spring bean with the name pubDao.

1 <osgi:service id="publisherOsgiService" ref="publisher" interface="deus.core.

soul.publication.PublisherExportedToClient" />

2

3 <osgi:reference id="pubDao" interface="deus.core.access.storage.api.sub.

LopEntryDao"/>

82



8.3 Conclusion

8.2.3 Spring DM Server

Since DEUS is composed by several OSGi bundles, an OSGi container is needed for deploying
the application. For this purpose Spring DM server is used. It builds on top of the OSGi

runtime Equinox1 and provides further support for Spring powered OSGi bundles. Bundles to
be deployed are dropped into a pickup folder and started by the server immediately.

8.3 Conclusion

By instrumenting Maven as build tool, the build process of DEUS follows conventions established
by Maven. The benefits are the use of Maven’s versioning mechanism, the facility for dependency
management, usage of the default Maven project structure, as well as support for enterprise-level
software development. The folder layout of DEUS reflects the decomposition of the system
into modules, where each module incorporates its own Maven project. The Spring Framework
supports loose coupling by instrumenting its dependency injection container. Declarative
configuration using Java annotations reduces complexity during development. Spring Dynamic
Modules was used for supporting the creation of Spring-powered OSGi modules that eventually
were deployed into the Spring DM application server.

1 http://www.eclipse.org/equinox

83





9 Future Work

While designing DEUS, many points of extensibility were discovered. Thus, on the one hand,
this chapter provides an overview of crucial features that were conceptually elaborated but
not yet implemented. On the other hand, issues requiring deeper investigation and further
conceptual work are outlined.

9.1 Implementational Features

While the concepts of repatriation relationships have been described in section 4.4.1.2, they
are not yet included in the reference implementation of DEUS. Since implementing these
relationships is analogous to the relationships in the publication phase, the effort is manageable.
Two different trust models have been described that introduce a plea for repatriating a
Digital Card being presented to the user. These trust models can be added to the reference
implementation in the course of implementing repatriation relationships. Furthermore, a history
of all contributed Digital Cards for each Concerned Person can be managed at the Information
Provider. Since this only involves a data structure that collects contributed Digital Cards
and associated Concerned Persons, implementation is straightforward. This would allow the
Information Provider to obtain an overview over contributed Digital Cards.
In section 7.3.2, the negotiation of a used transfer protocol on sending a message has been

described. This involves discovering transfer protocols being available to the target DEUS

peer. Subsequently, a simple algorithm may be implemented that chooses one protocol out of
the common subset of both communication partners, taking attached priorities into account.
For discovering metadata of URI-based resources over the Internet, the discovery protocol
stack around XRD has been described in section 5.2. The current reference implementation
takes transfer protocol negotiation into account by externalizing related code into strategies
[GHJV95, p. 315]. However, the described discovery mechanisms have not been integrated yet.
The reference implementation is prepared for transfer protocol negotiation and the concepts
behind discovery have been elaborated.

Plugging in a new transfer protocol binding may involve protocol-specific account generation
for all registered users of the DEUS node. Currently, transfer protocol accounts are generated
during user sign up for all available protocol bindings. If a new binding is added while user

85



9 Future Work

accounts already exist, these DEUS accounts need to be provided with accounts specific to the
new transfer protocol. The reference implementation is lacking this feature of supplementary
protocol-specific account generation.
The emphasis of this thesis was more on creating an extensible system design that allows

for plugging in arbitrary transfer protocols than on concrete binding implementations. Thus,
the current XMPP binding awaits completion by implementing an XML binding for the party
information model described in section 6.3. Furthermore, other possibilities offered by XMPP

and its extensions need to be evaluated to complete the implementation of trust relationship
establishment and termination. While currently the presence protocol part of XMPP is used to
manage subscriptions, a shift to the publish/subscribe extension of XMPP [MSAM09] or to group
chats may provide better support. Another possible binding can be created by instrumenting a
RESTful API including the implementation of message queues to guarantee message delivery.
Besides regarding REST as a protocol binding for transferring messages to DEUS peers, it can
also be instrumented for exporting DEUS functionality to neighbor systems. Interfaces that
are exported by the core tier to clients, thus, could be remotely invoked by non-DEUS systems
using a RESTful API. These interfaces are also instrumented to control DEUS using an intended
web interface that also awaits its realization. Currently, no user interface is included with the
reference implementation.

XRI has been described in section 5.1.2 as another type of user ID that can be integrated. In
the course of this thesis, XRI has been evaluated as too complex and not wide-spread enough.
Nonetheless, its concept of addressing real-world entities like persons and organizations instead
of web resources fits well into the concept of DEUS. Thus, XRI may be integrated in the future
depending on its maturity and the acceptance obtained among Internet users.
Furthermore, a standard named Portable Contacts [Sma08] provides an API that allows

access to existing address books. This API can be implemented in order to export address
information of all publishers included in the Distributed Information Folder as an address book.

9.2 Conceptual Issues

While the previous features can be implemented in a straightforward way, the following concepts
require deeper evaluation and more conceptual work. In the following, future conceptual work
motivated by the healthcare problem domain is distinguished from concepts whose adaption is
motivated by technical issues.

86



9.2 Conceptual Issues

9.2.1 Future Work Motivated by the Problem Domain

A local search could empower users of a DEUS node to search for other users. Any DEUS

user may decide to include arbitrary information in an index that is used for searching. That
solves the ‘first contact problem’ of local users getting known to each other. Since each user is
uniquely identified by its user ID, a request to establish a connection can be issued as soon as
this ID is known. Without possessing the ID of the communication counterpart, methods like
the local search need to be employed to discover IDs. While the same applies for distributed
search, this is even more difficult since no central index is available. The problem of searching
a network without a central infrastructure also appears with peer-to-peer file sharing protocols.
XMPP also offers an extension for distributed search, that may be evaluated [SA04]. Thus,
further investigation is needed for implementing a comprehensive, local and global search for
DEUS account.
More conceptual work is also required on various topics that have already been touched on

briefly. This includes filtering during the publication phase by the creation of subscriber groups,
as described in section 4.4.3, and the initial publishing of historic Digital Cards, elaborated on
in section 4.4.5. Furthermore, requirements of authentication mechanism in healthcare systems
need to be investigated. Although, DEUS system design has considered the collaboration
scenario of section 3.4, concrete support for it requires the implementation of the injection of
lists of trusted peers.
A modular way of providing DEUS with knowledge about the content of exchanged Digital

Cards is to introduce a plug-in model for different kinds of Digital Cards. This is a precondition
for adding other assimilation strategies, described in section 4.4.2. Since these strategies would
be aware of the content of digital cards, automatic assimilation becomes possible. This could
be accompanied by the introduction of a model of associations between Digital Cards. The
result of these more complex assimilation strategies would be a patch incorporating a more
complex data structure, subsequently being sent to subscribers.
The described Contribution-Repatriation-Publication Chain requires the patient to govern

information exchange. This could become problematic since the patient may not always be
able to decide which subscribers should receive which repatriated Digital Card. A possible
solution for this issue may include ‘hints’ being provided by the Information Provider during
repatriating the Digital Card. These hints could indicate which subscriber groups should receive
this Digital Card. The patient subsequently either follows these hints or decides to chose other
subscribers. This would require the Information Provider to be aware of the subscriber groups
existing at the Concerned Person.

87



9 Future Work

Besides obtaining Digital Cards with a given ID, the functional role Retriever should also
enable searching a Foreign Information File. This requires knowledge of the content of Digital
Cards and methods for scanning it. As soon as this is specified, searching in a Distributed
Information Folder can be implemented and exported to existing HCIS.

9.2.2 Future Work Motivated by Technical Issues

Together with the advent of the XRI standard, a method for semantic markup of relationships
known as XDI1 has been developed [RS04]. XDI embodies a generic service for sharing, linking
and synchronizing data using XML documents and XRIs. It includes the high level concept of
link-contracts that enable control over authorizing and securing shared data. Together with
XRI as identifier scheme, XDI can be introduced as another transfer protocol binding.

Furthermore, the focus during the implementation of trust relationships was on the publication
phase. Here, an XMPP binding is employed to map 1:N communication. As described in
section 4.6.2, the requirements of transfer protocol bindings in the repatriation phase are
different from the ones in the publication phase. Therefore, REST as an architectural style
implemented by HTTP has been proposed in section 5.3.1 that partially fulfills the requirements.
Thus, a RESTful API may be specified that serves as another transfer protocol binding.

Another issue is the relocation of existing DEUS accounts. A patient may wish to change the
provider of his/her DEUS account, for example, after changing the health insurance company,
where the account was hosted. Physicians assuming the roles of Treatment Provider and
Audience Party may change their user IDs due to renaming. Thus, a mechanism needs to
be established that either changes existing entries of the list of contributors, subscribers and
publishers, described in section 4.4.1, or forwards requests to the new account. This heavily
depends on the type of identifier: While XRIs are abstract per definition another service
endpoint may be returned by the resolution process [WRC+06]. Since URLs lack this abstract
definition, either existing list entries need to be updated or the old account needs to be further
maintained to redirect requests to the new one.

Currently, logic for the establishment and termination of trust connections is distributed over
several subsystems. The subsystems Publication and Subscription encompass methods exported
to clients and peers for connection management for the publication phase. Connection setup
of repatriation relationships is eventually distributed over the subsystems Contribution and
Repatriation Hub. Both types of relationships share facilities for establishing and terminating
them, potentially initiated by both communication partners. Thus concepts of relationship

1 XRI Data Interchange

88



9.2 Conceptual Issues

management can be factored out to a generic relationship component that depends on the Barker
subsystem for user-system interaction. Callbacks by specific subsystems may be injected that
provide notifications of relationship events. A method may be provided by this component to
retrieve the list of communication partners. This may, for example, be needed by the Publication
subsystem in order to publish Personal Information File state changes or by the Repatriation
Hub subsystem to implement both trust models described in section 4.4.1.2. The ability to
initiate establishment or termination of a connection may be restricted by parameterizing the
relationship component. A generic scheme for piggy-backing arbitrary payload onto establishing
and termination messages may be provided. This may, for example, be used for piggy-backing
a first Digital Card to contribute onto the repatriation relationship request, as explained in
section 4.4.1.2. By introducing this relationship management component, logic for connection
setup and teardown would no longer be distributed over several subsystems. By following the
separation of concerns design principle, it would be easier to add extensions to the mechanism of
trust relationship establishing like certificate checking or mutual validation of email addresses.

89





10 Conclusion

In Germany, patients are treated by office-based physicians constituting the primary care and
hospitals, laboratories, and pharmacies of the secondary care. If the spectrum of diagnosis
or treatment provided by an institution is not sufficient, the patient is referred to another
institution. This often involves repeated anamnesis interviews since the patient’s health record
is not available to the referred institution. Patient-related information exchange is confined
to the postal delivery of paper-based documents that must explicitly be requested. A system
that supports comprehensive exchange of patient-related information between institutions is
missing. Existing healthcare information systems focus on the secondary care and require a
central infrastructure such as indexes or federated databases.
With DEUS, an acronym for Distributed Electronic Patient File Update System, a solution

has been proposed that provides seamless, inter-institutional, cross-organizational flow of
information. Originally, the topic was motivated by a lack of standards for synchronizing contact
data on the Internet. While protocols for accessing address books exist, the synchronization
problem has not yet been solved thoroughly. With DEUS a system has been created that follows
a publish/subscribe architecture to distribute user-centric information to interested third parties
assuming the role of subscribers. A collection of information published by various users is
managed on the subscriber side forming the abstract concept of a Distributed Information
Folder. In the context of address and contact data, this folder is named Distributed Address
Book. Following the DEUS approach, information about foreign parties is no more managed
by the owner of the address book, but by the owner of the address entry. A publication of
any changes to a user’s contact information results in connected address books being updated.
The distributed nature of DEUS allows for arbitrary parties to provide DEUS nodes for the
management of address data. While a de facto standard of exporting address books named
Portable Contacts provides an API for accessing address books, DEUS tackles the problems of
updates and synchronization that are explicitly deferred by Portable Contacts.
With the focus on contact data, publishing information solely contributed by the account

owner and allowing subscribers to receive notifications is sufficient. To also be applicable in
healthcare, DEUS furthermore allows for the contribution of information by third parties which
is incorporated by the process of ‘repatriation’.

91



10 Conclusion

By the abdication of any central infrastructure, local autonomy of healthcare institutions is
preserved. DEUS follows the current working practice by adhering to a document-oriented design
principle. No special platform or integration technique is required, so that it can be deployed to
the current, heterogeneous infrastructure. As an extension to existing healthcare information
systems, it provides the contribution of Digital Cards, constituting viable documents, to patient
files. Current systems employ DEUS by either bundling information into a Digital Card and
contributing it or by retrieving Digital Cards from subscribed patient files. The patient governs
his health record and the distribution of parts of it to other institutions that require access.
The feasibility of the concept is proven by a reference implementation of DEUS. A Digital Card
containing patient master data has been chosen as the first type of information handled by
DEUS. While DEUS is agnostic of the content of exchanged Digital Cards, this decision is due
to the fact that patient master data occurs in all health records. By adhering to the described
approach, DEUS offers a solution for the comprehensive problem of generic, user-centric data
interchange which can be deployed and built upon in every domain requiring this kind of
architecture.

92



Appendices





Bibliography

[ACC07] H. ACC. RSNA.(2005). Integrating the Healthcare Enterprise-IT Infras-
tructure; Technical Framework, Volume 1,(ITI TF-1): Integration Profiles.
from http://www.ihe.net. Technical_Framework/upload/ihe_iti_tf_2.0_vol1_FT
_2005-08-15.pdf, 1:157, 2007.

[BLFM05] T. Berners-Lee, R. Fielding, and L. Masinter. RFC 3986: Uniform resource identifier
(URI): Generic syntax. The Internet Society, 2005.

[DH98] F. Dawson and T. Howes. RFC 2426: vCard MIME directory profile, September
1998.

[Ecl08] Eclipse project. Higgins Open Source Identity Framework. http://www.eclipse.

org/higgins/, 2008.

[EFGK03] P.T. Eugster, P.A. Felber, R. Guerraoui, and A.M. Kermarrec. The many faces of
publish/subscribe. ACM computing Surveys, 35(2):114–131, 2003.

[eHe03] eHealth. Ministerial Declaration, Brussels. http://europa.eu.int/information_

society/eeurope/ehealth/conference/2003/doc/min_dec_22_may_03.pdf,
May 2003.

[FGM+99] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee. RFC 2616: Hypertext transfer protocol–HTTP/1.1, June 1999. Status:
Standards Track, 1999.

[Fie00] R.T. Fielding. Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, 2000.

[Fow03] M. Fowler. Patterns of enterprise application architecture. Addison-Wesley Profes-
sional, 2003.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns
- Elements of reusable software. Addison-Wesley Professional, January 1995.

95

http://www.eclipse.org/higgins/
http://www.eclipse.org/higgins/
http://europa.eu.int/information_society/eeurope/ehealth/conference/2003/doc/min_dec_22_may_03.pdf
http://europa.eu.int/information_society/eeurope/ehealth/conference/2003/doc/min_dec_22_may_03.pdf


Bibliography

[GHNO06] J. Gregorio, M. Hadley, M. Nottingham, and D. Orchard. URI Template. Network
Working Group, Internet Draft, 2006.

[HBS02] Mark Hapner, Rich Burridge, and Rahul Sharma. Java Message Service, April
2002.

[HL08a] Eran Hammer-Lahav. Beginner’s Guide to Discovery. http://www.hueniverse.

com/hueniverse/2008/07/beginners-guide.html, July 2008.

[HL08b] Eran Hammer-Lahav. Discovery and HTTP. http://www.hueniverse.com/

hueniverse/2008/09/discovery-and-h.html, September 2008.

[HL08c] Eran Hammer-Lahav. XRDS-Simple specification. http://xrds-simple.net/

core/1.0/, March 2008.

[HL09a] Eran Hammer-Lahav. Link-based Resource Descriptor Discovery. IETF, 2009.

[HL09b] Eran Hammer-Lahav. The Discovery Protocol Stack. http://www.hueniverse.

com/hueniverse/2009/03/the-discovery-protocol-stack.html, March 2009.

[HW03] G. Hohpe and B. Woolf. Enterprise integration patterns: Designing, building,
and deploying messaging solutions. Addison-Wesley Longman Publishing Co., Inc.
Boston, MA, USA, 2003.

[LBK07] R. Lenz, M. Beyer, and K.A. Kuhn. Semantic integration in healthcare networks.
International journal of medical informatics, 76(2-3):201–207, 2007.

[Len97] R. Lenz. Adaptive Datenreplikation in Verteilten Systemen, volume 23 of Teubner-
Texte zur Informatik (TTzI). Teubner Verlag, Leipzig, Germany,, 1(0):46, 1997.

[LSLG00] K. Lorig, D. Sobel, D. Laurent, and V. Gonzalez. Living a Healthy Life With
Chronic Conditions: Self-management of Heart Disease, Arthritis, Diabetes, Asthma,
Bronchitis, Emphysema & Others. Bull Publishing Company, 2000.

[MSAM09] Peter Millard, Peter Saint-Andre, and Ralph Meĳer. XEP-0060: Publish-Subscribe,
February 2009.

[NHL09] M. Nottingham and Eran Hammer-Lahav. Host Metadata for the Web. IETF,
2009.

[Not09] M. Nottingham. Link Relations and HTTP Header Linking. IETF, 2009.

96

http://www.hueniverse.com/hueniverse/2008/07/beginners-guide.html
http://www.hueniverse.com/hueniverse/2008/07/beginners-guide.html
http://www.hueniverse.com/hueniverse/2008/09/discovery-and-h.html
http://www.hueniverse.com/hueniverse/2008/09/discovery-and-h.html
http://xrds-simple.net/core/1.0/
http://xrds-simple.net/core/1.0/
http://www.hueniverse.com/hueniverse/2009/03/the-discovery-protocol-stack.html
http://www.hueniverse.com/hueniverse/2009/03/the-discovery-protocol-stack.html


Bibliography

[Pat03] Nandish Patel. Deferred system’s design: countering the primacy of reflective
IS development with action-based information systems. Adaptive Evolutionary
Information Systems, pages 1–28, 2003.

[PB05] J. Powell and I. Buchan. Electronic Health Records Should Support Clinical
Research. Journal of Medical Internet Research, 7(1), 2005.

[RL03] S.K. Rothschild and S. Lapidos. Virtual Integrated Practice: Integrating Teams
and Technology to Manage Chronic Disease in Primary Care. Journal of Medical
Systems, 27(1):85–93, 2003.

[RLHJ99] D. Raggett, A. Le Hors, and I. Jacobs. HTML 4.01 Specification. W3C Recom-
mendation REC-html401-19991224, World Wide Web Consortium (W3C), pages
154–156, 1999.

[RM05] Drummond Reed and Dave McAlpin. Extensible Resource Identifier Syntax 2.0,
OASIS Committee Specification, OASIS XRI Technical Committee, November
2005.

[RS04] Drummond Reed and Geoffrey Strongin. The dataweb: an introduction to XDI.
White paper of the OASIS XDI Technical Committee, 2, 2004.

[SA04] Peter Saint-Andre. XEP-0055: Jabber Search, March 2004.

[Sam04] Josie Samers. Report on Integrated Care in Advanced Cancer Project. Technical
report, Inner and Eastern Melbourne BreastCare Consortium, mar 2004.

[Sma08] Joseph Smarr. Portable Contacts 1.0 Draft C. http://www.portablecontacts.

net/draft-spec.html, August 2008.

[vZB07] J. van Zyl and E. Bjørsnøs. Maven: The Definitive Guide. O’Reilly Media, 2007.

[WRC+06] G. Wachob, D. Reed, L. Chasen, W. Tan, and S. Churchill. Extensible Resource
Identifier (XRI) Resolution v2.0, March 2006.

[WVM01] M.H. Williams, G. Venters, and D. Marwick. Developing a regional healthcare
information network. Information Technology in Biomedicine, IEEE Transactions
on, 5(2):177–180, 2001.

97

http://www.portablecontacts.net/draft-spec.html
http://www.portablecontacts.net/draft-spec.html




List of Figures

3.1 The basic interaction scenario around contribution, repatriation and publication 9
3.2 The relationship of the artifacts Personal Patient File, Foreign Patient File and

Distributed Patient Folder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.1 The three DEUS actors and their roles in a distribution scenario. . . . . . . . . 14
4.2 The data model of the introduced Digital Card . . . . . . . . . . . . . . . . . . 16
4.3 The model of the Personal Information File . . . . . . . . . . . . . . . . . . . . 17
4.4 The model of the Foreign Information File and the Distributed Information Folder 18
4.5 The DEUS Contribution-Repatriation-Publication Chain . . . . . . . . . . . . . 19
4.6 The two-dimensional classification of a user account . . . . . . . . . . . . . . . 21
4.7 A repatriation relationship connecting the functional roles Contributor and

Repatriation Authority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.8 The list of contributors and their entries . . . . . . . . . . . . . . . . . . . . . . 22
4.9 A publication relationship connecting the functional roles Publisher and Subscriber 23
4.10 Terminology around the establishment and termination of pub/sub connections 23
4.11 The list of subscribers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.12 The list of publishers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.13 Domain-specific artifacts opposed to generic DEUS artifacts in the context of

the Contribution-Repatriation-Publication Chain . . . . . . . . . . . . . . . . . 30

5.1 The discovery protocol stack around XRD ([HL09b]) . . . . . . . . . . . . . . . 36

6.1 The DEUS architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.2 The Soul subsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.3 An EERD of a party’s master data . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.1 The DEUS domain model with model elements grouped by subsystems . . . . . 53
7.2 The UserId model element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.3 The dossier and depository model elements . . . . . . . . . . . . . . . . . . . . 54
7.4 The abstract base entity AttentionElement . . . . . . . . . . . . . . . . . . . . . . 55
7.5 The hierarchy of attention elements . . . . . . . . . . . . . . . . . . . . . . . . . 55

99



List of Figures

7.6 The Account entity and its properties . . . . . . . . . . . . . . . . . . . . . . . . 56
7.7 The DEUS infrastructure access sublayer architecture . . . . . . . . . . . . . . . 57
7.8 An exemplary data access interface for loading and storing entries of the list of

publishers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.9 Decoupling of interface and implementation instrumenting the OSGi service registry 58
7.10 The architecture of the transfer access sublayer including an exemplary protocol

binding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.11 Exemplary sending a message for requesting a subscription . . . . . . . . . . . 61
7.12 Receiving an exemplary Subscription Request Granted Message . . . . . . . . . . . . 63
7.13 The basic functionality of the loopback protocol binding . . . . . . . . . . . . . 64
7.14 The exemplary subsystem Foo and its exported interfaces . . . . . . . . . . . . 66
7.15 The lateral Barker subsystem for user-system-interaction . . . . . . . . . . . . . 67
7.16 The registration of a user and subsequent actions of role setup and observer

notification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.17 The basic elements of the Gatekeeper subsystem . . . . . . . . . . . . . . . . . 71
7.18 The Contribution subsystem and its exported interfaces . . . . . . . . . . . . . 72
7.19 The Repatriation Hub subsystem and its exported interfaces . . . . . . . . . . 72
7.20 The PIF-Governing subsystem and its exported interfaces . . . . . . . . . . . . 73
7.21 The Publication subsystem and its exported interfaces . . . . . . . . . . . . . . 74
7.22 The Subscription subsystem and its exported interfaces . . . . . . . . . . . . . 76
7.23 The DIF-Governing subsystem and its exported interfaces . . . . . . . . . . . . 77

A.1 The default Maven project folder structure for the Gatekeeper subsystem . . . 106
A.2 An exemplary Maven project structure using module-submodule and inheritance

relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

B.1 The DEUS project directory structure . . . . . . . . . . . . . . . . . . . . . . . 109

100



List of Abbreviations

AOP Aspect-Oriented Programming

API Application Programming Interface

CDA Clinical Document Architecture

CRUD Create, Read, Update, Delete

DNS Domain Name System

EERD Enhanced Entity-Relationship Diagram

EHR Electronical Health Record

ERD Entity-Relationship Diagram

FTP File Transfer Protocol

GNU GNU1 is Not Unix

HCIS Healthcare Information System

HL7 Health Level 7

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IHE Integrating the Healthcare Enterprise

JAR Java Archive

JCA Java Connector Architecture

JEE Java Platform, Enterprise Edition

1 GNU1 is Not Unix

101



List of Figures

JMS Java Message Service

JMX Java Management Extensions

LOINC Logical Observation Identifiers Names and Codes

LRDD Link-based Resource Descriptor Discovery

MIME Multipurpose Internet Mail Extensions

NSI Neighbor System Interface

OASIS Organization for the Advancement of Structured Information Standards

OSGi Open Services Gateway Initiative

PKI Public Key Infrastructure

POJO Plain Old Java Object

POM Project Object Model

REST Representational State Transfer

RHIN Regional Healthcare Information Networks

RFC Request For Comments

SIP Session Initiation Protocol

SMTP Simple Mail Transfer Protocol

SNOMED Systematized Nomenclature of Medicine

SOAP Simple Object Access Protocol

TCP Transmission Control Protocol

UI User Interface

UML Unified Modelling Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

URN Uniform Resource Name

102



List of Figures

WWW World Wide Web

XDI XRI Data Interchange

XDS Cross Enterprise Document Sharing

XML Extended Markup Language

XMPP Extensible Messaging and Presence Protocol

XRDS Extensible Resource Descriptor Sequence

XRD Extensible Resource Descriptor

XRI Extensible Resource Identifier

103





A An Overview of Maven

An XML representation of the POM, with which a Maven project is configured, can be found in
the file pom.xml in the root folder of a Maven project. There, the Maven project coordinates
are defined, including the artifact ID, the group ID, the version, and the packaging type. The
group ID of a project reflects the organization working on it. Maven uses a dot notation to
denote a hierarchical path in the group ID. In contrast to the group ID, hierarchical dissection
in the artifact ID is not provided. The packaging type specifies the type of Maven project and
is set to jar for projects being bundled as JAR files.
The version number is structured by Maven adhering to the following scheme: <major

version>.<minor version>.<incremental version>-<qualifier>. An exemplary project version is 0.3.1-

alpha. Maven furthermore offers the concept of snapshot projects, that manifest a version
containing the qualifier SNAPSHOT. This indicates a project version under active development
and inhibits deploying this project to public Maven repositories.
Another major feature of Maven is its declarative dependency management. Dependencies

of a project are declared using their project coordinates in the POM file. During build time,
Maven downloads required artifacts from public Maven repositories on the Internet. Required
dependencies may themself declare their own dependencies in their POM files, so that transitive
dependencies occur which are managed automatically. For each dependency, a scope may
be declared that specifies during which phase the dependency is needed. The scope compile

indicates dependencies only needed during compile time, the default scope runtime indicates
dependencies also needed during runtime, the scope test marks dependencies as only needed
during test time.

By adhering to the convention over configuration principle, Maven proposes a default project
directory structure. The root folder of a project contains the POM file. Below the folder src,
all source files can be found. This folder is further divided by the subfolders main and test.
Maven strictly distinguishes between main project sources and sources only needed during
test time. Below each folder, the directories java and resources separate source code from static
configuration resources. Another folder called spring was introduced on this level to contain
Spring configuration files.

105



A An Overview of Maven

Figure A.1: The default Maven project folder structure for the Gatekeeper subsystem

Below the root folder, the directory target is taken as the output folder of all build artifacts.
After Maven packaged the project, it can be found as JAR file in the target folder. All compiled
classes contained in the src/main/java folder are included in target/classes. Also, the resources
under src/main/resources are copied to target/classes. In parallel all compiled test classes of
src/test/java and any test resources are found in target/test-classes. The Maven clean command
results in just deleting the target folder. The described folder structure adheres to the Maven
convention and is displayed in figure A.1. It can be changed by declaring other paths to the
described folders in the POM file.
In comparison to procedural build tools like Ant1 or GNU2 Make3, Maven adheres to a

declarative approach. A default build life cycle is provided by Maven, that can be declaratively
customized in the POM file. The basic phases include validate, compile, test-compile, test, package,
install, and deploy. The phases are passed through in a sequential order and the build is canceled
if one of the phases fail. Before compiling the source code and the test classes, the project is
validated. After executing any tests, the compiled classes are packaged into a JAR file. The
install phase copies the artifacts to a local repository that provides other local Maven projects
with the generated artifact. In the last phase, the artifact is deployed to a configured remote
repository, so that the artifact is available for other projects and developers.
The Maven core is only aware of the POM file, the life cycle, and a plug-in mechanism.

Maven plug-ins, offering so called goals, are plugged into various phases of the life cycle. The

1 http://ant.apache.org
2 GNU is Not Unix
3 http://www.gnu.org/software/make

106



life cycle can be customized by changing the configuration of these plug-ins or adding other
plug-ins. The plug-ins themself are retrieved from Maven plug-in repositories on the Internet.
Additional plug-ins that can be instrumented include Maven Eclipse Plug-in for Eclipse project
file generation, Maven Dependency Plug-in for copying all dependencies into a specified folder,
Maven Antrun Plug-in for running Ant tasks, and Maven Bundle Plug-in for the creation of
OSGi manifest files for projects with packaging type bundle.
The latter plug-in therefore scans all compiled Java classes of the generated artifact and

extracts package imports not fulfilled by the package itself. These packages are included into
the OSGi specific Import-Package: header in the MANIFEST.MF file of the JAR file.
Deploying the bundle into an OSGi container, all package imports must be available by

other deployed bundles. If all package imports are fulfilled, the bundle state is ‘Resolved’. On
subsequently starting it, its services are exported to the service registry and it changes state to
‘Active’. By default, the Maven Bundle Plug-in also adds the manifest header Export-Package:

and includes each package of the JAR file as export. However, the set of exported packages can
be restricted by configuration of the plug-in in the POM file. Furthermore, several OSGi specific
manifest headers are written by the Maven Bundle Plug-in. These include the headers Bundle-

SymbolicName, Bundle-Name, and Bundle-Version. The symbolic name is obtained by appending
the artifact ID to the group ID. The bundle name is an mnemonic name taken from the Maven
project property <name />. The OSGi version of the bundle reflects the Maven project version.

Maven is controlled by a command line interface and tries to locate a POM file in the folder
it is called. Either a life cycle phase or a Maven plug-in goal can be passed as an argument.
An example call to request Maven to generate Eclipse project files out of the POM file is ‘mvn

eclipse:m2eclipse’. While eclipse is the name of the plug-in, m2eclipse is the name of a goal of
this plug-in. The execution of any plug-in goal can be configured through the POM file. An
exemplary call that triggers the execution of all life cycle phases including package is ‘mvn

package’.
Another feature of Maven is the support for multi-module projects. Declaring a project as

multi-module is done by setting the packaging type to pom instead of jar. Furthermore a list of
submodules must be specified, where the module names correspond to subfolders of the root
project folder. On executing any Maven goal, Maven delegates the command to all modules
of this project. This is done recursively so that the modules form a tree with normal Maven
projects as leafs. This can be done in order to separate subprojects, e.g. to distinguish the core
logic in the module core from the web UI1 in the module web.

1 User Interface

107



A An Overview of Maven

Maven furthermore supports the inheritance of POM files. Configuration of parent POM files
is inherited by child POM files, including the group ID and the version. While all configuration
elements may optionally be overwritten, the artifact ID must be provided. Multi-module
support and inheritance are often used together by modules inheriting their POM file from the
POM file of the parent project. In this scenario, common dependencies of all modules can be
declared in the root POM file and inherited to child POM. Furthermore, Maven supports the
management of dependency version numbers in the root project on behalf of the child project.
Dependencies managed in this way are declared in the root POM and activated by submodules
when needed. This guarantees consistent dependency versions throughout the whole project.
Using a combination of module-submodule and inheritance relationships between projects
results in arbitrary complex project structures. An example of a possible structure is outlined
in figure A.2.

Figure A.2: An exemplary Maven project structure using module-submodule and inheritance
relationships

108



B DEUS Maven Project

B.1 The Folder Structure of the DEUS Maven Project

Figure B.1: The DEUS project directory structure

109



B DEUS Maven Project

B.2 The DEUS Root POM File

1 <project xmlns="http:// maven.apache.org/POM /4.0.0" xmlns:xsi="http://www.w3.

org /2001/ XMLSchema -instance" xsi:schemaLocation="http: //maven.apache.org/

POM /4.0.0 http:// maven.apache.org/maven -v4_0_0.xsd">

2 <modelVersion >4.0.0</modelVersion >

3

4 <groupId >inf6.promed </groupId >

5 <artifactId >prototype -pom</artifactId >

6 <version >0.3- SNAPSHOT </version >

7 <packaging >pom</packaging >

8 <name>DEUS root pom</name>

9

10

11 <modules >

12 <module >deus</module >

13 <module >dacus</module >

14 </modules >

15

16 <properties >

17 <spring.version >2.5.6.A</spring.version >

18 <aspectj.version >1.6.1</aspectj.version >

19 <spring.agent.version >2.5.6 </spring.agent.version >

20 <spring.osgi.version >1.1.2.B</spring.osgi.version >

21 <application.traceLevels >*=warn ,deus .*= verbose ,dacus .*= verbose </

application.traceLevels >

22 </properties >

23

24

25 <developers >

26 <developer >

27 <id>cpn</id>

28 <name>Christoph Neumann </name>

29 <email>christoph.neumann@informatik.uni -erlangen.de</email>

30 <url>http://www6.informatik.uni -erlangen.de/people/cpn/</url>

31 <organization >Uni Erlangen - Informatik 6</organization >

32 <organizationUrl >http://www6.informatik.uni -erlangen.de/</

organizationUrl >

33 </developer >

34 <developer >

35 <id>siflramp </id>

36 <name>Florian Rampp</name>

37 <email>Florian.Rampp@informatik.stud.uni -erlangen.de</email>

110



B.2 The DEUS Root POM File

38 <organization >Uni Erlangen - Informatik 6</organization >

39 <organizationUrl >http://www6.informatik.uni -erlangen.de/</

organizationUrl >

40 </developer >

41 </developers >

42

43 <scm>

44 <connection >scm:svn:https: //svn.origo.ethz.ch/dacus/tags/dacus -0.2</

connection >

45 <developerConnection >scm:svn:https: //svn.origo.ethz.ch/dacus/tags/

dacus -0.2</developerConnection >

46 <tag>HEAD</tag>

47 </scm>

48

49 <issueManagement >

50 <system >Redmine </system >

51 <url>faui6p15.informatik.uni -erlangen.de:3000 </url>

52 </issueManagement >

53

54 <!--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -->

55 <!--+++ DEPENDENCIES ++++++++++++++++++++++++++++++++++++++++++++++++ -->

56 <!--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -->

57

58 <dependencyManagement >

59

60 <dependencies >

61

62 <!--+++ INTRA -PROJECT DEPENDENCIES ++++++++++++++++++++++++++ -->

63

64 <dependency >

65 <groupId >inf6.promed </groupId >

66 <artifactId >deus -core -access -storage -api</artifactId >

67 <version >${ project.version}</version >

68 <type>bundle </type>

69 </dependency >

70

71 <dependency >

72 <groupId >inf6.promed </groupId >

73 <artifactId >deus -core -access -storage -inmemory </artifactId >

74 <version >${ project.version}</version >

75 <type>bundle </type>

76 </dependency >

77

78 <dependency >

111



B DEUS Maven Project

79 <groupId >inf6.promed </groupId >

80 <artifactId >deus -core -access -storage -hibernate </artifactId >

81 <version >${ project.version}</version >

82 <type>bundle </type>

83 </dependency >

84

85 <dependency >

86 <groupId >inf6.promed </groupId >

87 <artifactId >deus -core -access -transfer -core</artifactId >

88 <version >${ project.version}</version >

89 <type>bundle </type>

90 </dependency >

91

92 <dependency >

93 <groupId >inf6.promed </groupId >

94 <artifactId >deus -core -access -transfer -plugins -local</

artifactId >

95 <version >${ project.version}</version >

96 <type>bundle </type>

97 </dependency >

98

99 <dependency >

100 <groupId >inf6.promed </groupId >

101 <artifactId >deus -core -access -transfer -plugins -xmpp</artifactId

>

102 <version >${ project.version}</version >

103 <type>bundle </type>

104 </dependency >

105

106 <dependency >

107 <groupId >inf6.promed </groupId >

108 <artifactId >deus -core -puddle </artifactId >

109 <version >${ project.version}</version >

110 <type>bundle </type>

111 </dependency >

112

113 <dependency >

114 <groupId >inf6.promed </groupId >

115 <artifactId >deus -gatekeeper </artifactId >

116 <version >${ project.version}</version >

117 <type>bundle </type>

118 </dependency >

119

120 <dependency >

112



B.2 The DEUS Root POM File

121 <groupId >inf6.promed </groupId >

122 <artifactId >deus -model</artifactId >

123 <version >${ project.version}</version >

124 <type>bundle </type>

125 </dependency >

126

127

128

129 <dependency >

130 <groupId >inf6.promed </groupId >

131 <artifactId >dacus -core -puddle </artifactId >

132 <version >${ project.version}</version >

133 <type>bundle </type>

134 </dependency >

135

136 <dependency >

137 <groupId >inf6.promed </groupId >

138 <artifactId >dacus -ui -puddle </artifactId >

139 <version >${ project.version}</version >

140 <type>bundle </type>

141 </dependency >

142

143 <!--+++ INTER -PROJECT DEPENDENCIES ++++++++++++++++++++++++++ -->

144

145 <!--+++ SPRING +++ -->

146 <dependency >

147 <groupId >org.springframework </groupId >

148 <artifactId >org.springframework.context </artifactId >

149 <version >${ spring.version}</version >

150 <scope>provided </scope>

151 </dependency >

152

153

154 <dependency >

155 <groupId >org.springframework.osgi</groupId >

156 <artifactId >org.springframework.osgi -library </artifactId >

157 <version >${ spring.osgi.version}</version >

158 <type>libd</type>

159 <scope>provided </scope>

160 </dependency >

161

162

163

164 <dependency >

113



B DEUS Maven Project

165 <groupId >org.springframework </groupId >

166 <artifactId >org.springframework.aspects </artifactId >

167 <version >${ spring.version}</version >

168 </dependency >

169

170 <dependency >

171 <groupId >org.springframework </groupId >

172 <artifactId >spring -agent</artifactId >

173 <version >${ spring.agent.version}</version >

174 <scope>test</scope>

175 </dependency >

176

177

178 <!--+++ ASPECTJ +++ -->

179 <dependency >

180 <groupId >org.aspectj </groupId >

181 <artifactId >com.springsource.org.aspectj.weaver </artifactId >

182 <version >${ aspectj.version}</version >

183 <scope>provided </scope>

184 </dependency >

185

186 </dependencies >

187 </dependencyManagement >

188

189

190

191 <dependencies >

192 <!--+++ INTRA -PROJECT DEPENDENCIES ++++++++++++++++++++++++++++++ -->

193

194 <!--+++ INTER -PROJECT DEPENDENCIES ++++++++++++++++++++++++++++++ -->

195

196 <dependency >

197 <groupId >org.springframework </groupId >

198 <artifactId >org.springframework.test</artifactId >

199 <version >${ spring.version}</version >

200 <scope>test</scope>

201 </dependency >

202

203 <!--+++ JUNIT +++ -->

204 <dependency >

205 <groupId >junit</groupId >

206 <artifactId >junit</artifactId >

207 <version >4.4</version >

208 <scope>test</scope>

114



B.2 The DEUS Root POM File

209 </dependency >

210

211

212 <!--+++ LOGGING +++ -->

213 <!-- Logback ist used as logging backend! -->

214 <dependency >

215 <groupId >ch.qos.logback </groupId >

216 <artifactId >com.springsource.ch.qos.logback.classic </artifactId >

217 <version >0.9.9</version >

218 <scope>test</scope>

219 </dependency >

220

221 <!-- We use the slf4j api , against which logback is programmed -->

222 <dependency >

223 <groupId >org.slf4j</groupId >

224 <artifactId >com.springsource.slf4j.api</artifactId >

225 <version >1.5.0</version >

226 </dependency >

227

228 </dependencies >

229

230

231

232 <!--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -->

233 <!--+++ BUILD +++++++++++++++++++++++++++++++++++++++++++++++++++++++ -->

234 <!--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -->

235

236 <build >

237

238 <!--+++ PLUGINS +++++++++++++++++++++++++++++++++++++++++++++++++ -->

239

240 <plugins >

241

242 <!-- MAVEN PROJECT FILE GENERATION -->

243 <plugin >

244 <groupId >org.apache.maven.plugins </groupId >

245 <artifactId >maven -eclipse -plugin </artifactId >

246 <configuration >

247 <wtpversion >2.0</wtpversion >

248 <additionalProjectFacets >

249 <com.springsource.server.bundle >1.0</com.springsource.

server.bundle >

250 </additionalProjectFacets >

251 <additionalBuildcommands >

115



B DEUS Maven Project

252 <buildcommand >org.eclipse.wst.common.project.facet.

core.builder </buildcommand >

253 <!--

254 since mvn eclipse:m2eclipse which should add

m2eclipse support to eclipse project ignores

all other natures and

255 builders , we just use mvn eclipse:eclipse and add

m2eclipse nature and builder manually here

256 -->

257 <buildcommand >org.maven.ide.eclipse.maven2Builder </

buildcommand >

258 <buildcommand >org.springframework.ide.eclipse.core.

springbuilder </buildcommand >

259 </additionalBuildcommands >

260 <additionalProjectnatures >

261 <projectnature >org.maven.ide.eclipse.maven2Nature </

projectnature >

262 <projectnature >org.springframework.ide.eclipse.core.

springnature </projectnature >

263 <projectnature >org.eclipse.wst.common.project.facet.

core.nature </projectnature >

264 <projectnature >com.springsource.server.ide.facet.core.

bundlenature </projectnature >

265 </additionalProjectnatures >

266 <!-- added this , so that automatically , the spring dm

server is the default runtime! -->

267 <additionalConfig >

268 <file>

269 <name>.settings/org.eclipse.wst.common.project.

facet.core.xml</name>

270 <content >

271 <![CDATA[

272 <?xml version ="1.0" encoding ="UTF -8"?>

273 <faceted -project >

274 <runtime name=" SpringSource dm Server (Runtime) v1.0" />

275 <installed facet="com.springsource.server.bundle" version ="1.0" />

276 </faceted -project >

277 ]]>

278 </content >

279 </file>

280 </additionalConfig >

281 <classpathContainers >

282 <classpathContainer >org.eclipse.jdt.launching.

JRE_CONTAINER </classpathContainer >

116



B.2 The DEUS Root POM File

283 <classpathContainer >com.springsource.server.ide.jdt.

core.MANIFEST_CLASSPATH_CONTAINER </

classpathContainer >

284 </classpathContainers >

285 </configuration >

286 </plugin >

287

288

289 <!-- BUNDLE MANIFEST GENERATION -->

290 <plugin >

291 <groupId >org.apache.felix</groupId >

292 <artifactId >maven -bundle -plugin </artifactId >

293 <version >1.4.3 </version >

294 <extensions >true</extensions >

295 <configuration >

296 <instructions >

297 <!--

298 export all packages below the root package (except

non exported packages), and do not reimport

them! more on

299 reimporting exported packages here: http: //www.

osgi.org/blog /2007/04/ importance -of -exporting -

nd -importing.html

300 If this behaviour is desired , add ;-noimport:=true

at the end!

301 -->

302 <Export -Package >${osgi.nonExportedPackages },${osgi.

rootPackage }.*</Export -Package >

303

304 <!--

305 include all other packages (also the non exported

packages !) as private. Export -Package takes

precedence over

306 Private -Package!

307 -->

308 <Private -Package >${osgi.rootPackage }.*;-split -package:

=merge -first </Private -Package >

309

310 <!-- remove the BND internal header , that just states ,

which packages are ignored by BND -->

311 <_removeheaders >Ignore -Package </_removeheaders >

312

313 <!-- add additional package imports -->

117



B DEUS Maven Project

314 <Import -Package >${osgi.additionalPackageImports },*</

Import -Package >

315

316 <!-- Spring DM server configuration for the level of

trace output -->

317 <Application -TraceLevels >${ application.traceLevels}</

Application -TraceLevels >

318 </instructions >

319 </configuration >

320 </plugin >

321

322

323 <!-- DEPENDENCY COPYING -->

324 <plugin >

325 <groupId >org.apache.maven.plugins </groupId >

326 <artifactId >maven -dependency -plugin </artifactId >

327 <configuration >

328 <!-- <outputDirectory >${ springdmserver.location }/

repository/bundles/usr</outputDirectory >-->

329 <outputDirectory >${ project.build.directory }/ dependencies </

outputDirectory >

330 <overWriteReleases >false</overWriteReleases >

331 <overWriteSnapshots >false</overWriteSnapshots >

332 <overWriteIfNewer >true</overWriteIfNewer >

333 <includeScope >runtime </includeScope >

334 <!-- <includeTypes >jar</includeTypes >-->

335 </configuration >

336 </plugin >

337

338 <!-- COMPILING -->

339 <plugin >

340 <groupId >org.apache.maven.plugins </groupId >

341 <artifactId >maven -compiler -plugin </artifactId >

342 <configuration >

343 <source >1.6</source >

344 <target >1.6</target >

345 <debug >true</debug>

346 </configuration >

347 </plugin >

348

349

350 <plugin >

351 <groupId >org.apache.maven.plugins </groupId >

352 <artifactId >maven -surefire -plugin </artifactId >

118



B.2 The DEUS Root POM File

353 <configuration >

354 <includes >

355 <include >**/* Test.java</include >

356 <include >**/* TestCase.java</include >

357 </includes >

358 </configuration >

359 </plugin >

360

361 <!-- COPY ARTIFACT TO APP SERVER ON PHASE pre -integration -test -->

362 <plugin >

363 <groupId >org.apache.maven.plugins </groupId >

364 <artifactId >maven -antrun -plugin </artifactId >

365 <executions >

366 <execution >

367 <phase >pre -integration -test</phase>

368 <configuration >

369

370 <tasks>

371 <taskdef resource="net/sf/antcontrib/

antcontrib.properties" />

372

373 <!-- copy the artifact only , if it is of ’

bundle ’ packaging -->

374 <if>

375 <equals arg1="${ project.packaging}" arg2="

bundle" />

376 <then>

377 <copy file="${ project.build.directory

}/${ project.build.finalName }.jar"

todir="${ springdmserver.location }/

pickup" />

378 </then>

379 <else>

380 <echo message="this Maven project is 

not deployed to app server , since 

it is not of packaging ’bundle ’ but

 ’${project.packaging}’" />

381 </else>

382 </if>

383 </tasks>

384 </configuration >

385 <goals >

386 <goal>run</goal>

387 </goals >

119



B DEUS Maven Project

388 </execution >

389 </executions >

390 <dependencies >

391 <dependency >

392 <groupId >ant -contrib </groupId >

393 <artifactId >ant -contrib </artifactId >

394 <version >20020829 </version >

395 </dependency >

396 </dependencies >

397 </plugin >

398

399 </plugins >

400

401 <!--+++ RESOURCES +++++++++++++++++++++++++++++++++++++++++++++++ -->

402

403 <resources >

404 <resource >

405 <directory >${ basedir }/src/main/resources </directory >

406 </resource >

407 <resource >

408 <targetPath >META -INF/spring </targetPath >

409 <filtering >false</filtering >

410 <directory >${ basedir }/src/main/spring </directory >

411 <includes >

412 <include >**/*. xml</include >

413 </includes >

414 </resource >

415 </resources >

416 <testResources >

417 <!--<testResource >

418 <directory >${ basedir }/src/test/resources </directory >

419 </testResource >-->

420 <testResource >

421 <filtering >false</filtering >

422 <directory >${ basedir }/src/main/spring </directory >

423 <includes >

424 <include >**/*. xml</include >

425 </includes >

426 </testResource >

427 <testResource >

428 <filtering >false</filtering >

429 <directory >${ basedir }/src/test/spring </directory >

430 <includes >

431 <include >**/*. xml</include >

120



B.2 The DEUS Root POM File

432 </includes >

433 </testResource >

434 </testResources >

435

436 </build >

437

438 <!--+++ REPOSITORIES ++++++++++++++++++++++++++++++++++++++++++++++++ -->

439

440 <repositories >

441 <repository >

442 <id>com.springsource.repository.bundles.release </id>

443 <name>SpringSource Enterprise Bundle Repository - SpringSource

Bundle Releases </name>

444 <url>http:// repository.springsource.com/maven/bundles/release </url

>

445 </repository >

446 <repository >

447 <id>com.springsource.repository.bundles.external </id>

448 <name>SpringSource Enterprise Bundle Repository - External Bundle

Releases </name>

449 <url>http:// repository.springsource.com/maven/bundles/external </

url>

450 </repository >

451 <repository >

452 <id>com.springsource.repository.libraries.release </id>

453 <name>SpringSource Enterprise Bundle Repository - SpringSource

Library Releases </name>

454 <url>http:// repository.springsource.com/maven/libraries/release </

url>

455 </repository >

456 <repository >

457 <id>com.springsource.repository.libraries.external </id>

458 <name>SpringSource Enterprise Bundle Repository - External Library

Releases </name>

459 <url>http:// repository.springsource.com/maven/libraries/external </

url>

460 </repository >

461 </repositories >

462

463 </project >

121



B DEUS Maven Project

B.3 The POM File of the Maven Gatekeeper Submodule

1

2 <project xmlns="http:// maven.apache.org/POM /4.0.0" xmlns:xsi="http://www.w3.

org /2001/ XMLSchema -instance" xsi:schemaLocation="http: //maven.apache.org/

POM /4.0.0 http:// maven.apache.org/maven -v4_0_0.xsd">

3 <modelVersion >4.0.0</modelVersion >

4

5 <parent >

6 <groupId >inf6.promed </groupId >

7 <artifactId >deus</artifactId >

8 <version >0.3- SNAPSHOT </version >

9 </parent >

10

11 <artifactId >deus -gatekeeper </artifactId >

12 <packaging >bundle </packaging >

13 <name>DEUS gatekeeper </name>

14

15 <!-- don not remove properties , even if they are empty !!! -->

16 <properties >

17 <osgi.rootPackage >deus.gatekeeper </osgi.rootPackage >

18 <!--

19 org.springframework.orm.jpa.support: this is needed for <

context:component -scan />. This BeanPostProcessor requires

20 PersistantAnnotationBeanPostProcessor which is in the given

package.

21 -->

22 <osgi.additionalPackageImports >org.springframework.orm.jpa.support </

osgi.additionalPackageImports >

23

24 <osgi.nonExportedPackages />

25 </properties >

26

27

28 <!--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -->

29 <!--+++ DEPENDENCIES ++++++++++++++++++++++++++++++++++++++++++++++++++++ -->

30 <!--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -->

31

32 <dependencies >

33 <!--+++ INTRA -PROJECT DEPENDENCIES ++++++++++++++++++++++++++++++ -->

34 <dependency >

35 <groupId >inf6.promed </groupId >

36 <artifactId >deus -model</artifactId >

122



B.3 The POM File of the Maven Gatekeeper Submodule

37 <type>bundle </type>

38 </dependency >

39

40 <dependency >

41 <groupId >inf6.promed </groupId >

42 <artifactId >deus -core -access -storage -api</artifactId >

43 <type>bundle </type>

44 </dependency >

45

46 <!--+++ INTER -PROJECT DEPENDENCIES ++++++++++++++++++++++++++++++ -->

47

48 <dependency >

49 <groupId >org.springframework </groupId >

50 <artifactId >org.springframework.context </artifactId >

51 </dependency >

52 <dependency >

53 <groupId >org.springframework.osgi</groupId >

54 <artifactId >org.springframework.osgi -library </artifactId >

55 <type>libd</type>

56 </dependency >

57

58 </dependencies >

59

60

61 <!--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -->

62 <!--+++ BUILD +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -->

63 <!--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -->

64

65 <build >

66

67 <plugins >

68

69 </plugins >

70

71 </build >

72

73

74 </project >

123


	1 Introduction
	1.1 The Current State
	1.2 The Emerging Problem
	1.3 Supporting Information Exchange Between Institutions

	2 Methods
	3 Requirements Analysis
	3.1 Objectives
	3.2 The Basic Interaction Scenario
	3.2.1 Contribution and Repatriation Phase
	3.2.2 Publication Phase

	3.3 Artifacts
	3.4 A Collaborative Scenario
	3.5 Conclusion

	4 Outline of DEUS
	4.1 DEUS Nodes vs. DEUS Accounts
	4.2 DEUS Actors and Their Assumed Roles
	4.3 DEUS Artifacts
	4.3.1 The Digital Card
	4.3.2 Dossier Files and Depository Folders
	4.3.3 Types of Digital Cards

	4.4 The DEUS Contribution-Repatriation-Publication Chain
	4.4.1 Setup and Teardown of Trust Relationships
	4.4.2 Repatriation Semantics
	4.4.3 Publication Filtering
	4.4.4 Synchronization
	4.4.5 Initial Publication

	4.5 The Collaborative Scenario
	4.6 Further Issues
	4.6.1 Identifier Schemes
	4.6.2 Communication Protocols
	4.6.3 Authentication

	4.7 Conclusion

	5 Fundamentals
	5.1 Addressing Schemes and Identifiers
	5.1.1 URI
	5.1.2 XRI

	5.2 Discovery
	5.3 Instrumented Communication Protocols
	5.3.1 REST
	5.3.2 XMPP
	5.3.3 JMS

	5.4 Conclusion

	6 Architectural Overview and Party Information Data Model
	6.1 DEUS System Design Decisions
	6.2 Decomposition of DEUS
	6.2.1 Vertical, Horizontal and Lateral Decomposition
	6.2.2 User and Neighbor System Interaction
	6.2.3 The DEUS Core
	6.2.4 Access to the Infrastructure
	6.2.5 Soul Subsystems

	6.3 The Party Information Data Model
	6.4 Conclusion

	7 System Design
	7.1 From Components to OSGi Modules
	7.2 Domain Model
	7.2.1 Cross-Cutting Model Elements
	7.2.2 Domain Model Elements for Administration of Relationships
	7.2.3 Dossier and Depository Model Elements
	7.2.4 Attention Model Elements
	7.2.5 The Model Elements of the Lateral Gatekeeper
	7.2.6 The Resulting OSGi Bundle

	7.3 Infrastructure Access Sublayer
	7.3.1 Data Access
	7.3.2 Transfer Access

	7.4 Soul Sublayer
	7.4.1 Lateral Barker
	7.4.2 Lateral Gatekeeper
	7.4.3 The Contribution Subsystem
	7.4.4 The Repatriation Hub Subsystem
	7.4.5 The PIF-Governing Subsystem
	7.4.6 The Publication Subsystem
	7.4.7 The Subscription Subsystem
	7.4.8 The DIF-Governing Subsystem

	7.5 Conclusion

	8 Implementation Issues
	8.1 Build Environment
	8.1.1 Maven as Build System
	8.1.2 DEUS Maven Project Layout

	8.2 Spring Framework and Spring DM Server
	8.2.1 Spring Dynamic Modules
	8.2.2 Spring Framework Applied
	8.2.3 Spring DM Server

	8.3 Conclusion

	9 Future Work
	9.1 Implementational Features
	9.2 Conceptual Issues
	9.2.1 Future Work Motivated by the Problem Domain
	9.2.2 Future Work Motivated by Technical Issues


	10 Conclusion
	Appendices
	Bibliography
	List of Figures
	List of Abbreviations 
	A An Overview of Maven
	B DEUS Maven Project
	B.1 The Folder Structure of the DEUS Maven Project
	B.2 The DEUS Root POM File
	B.3 The POM File of the Maven Gatekeeper Submodule


