
Ostbayerische Technische Hochschule Amberg-Weiden
Fakultät Elektrotechnik, Medien und Informatik

Studiengang Medieninformatik

Bachelorarbeit

von

Philipp Stangl

Entwurf und Implementierung eines heterogenen
Blockchain-Konsortiums für ein

Lebensmittel-Lieferketten-Netzwerk

Design and Implementation of a Heterogeneous
Blockchain Consortium for a Food Supply Chain Network

Ostbayerische Technische Hochschule Amberg-Weiden
Fakultät Elektrotechnik, Medien und Informatik

Studiengang Medieninformatik

Bachelorarbeit

von

Philipp Stangl

Entwurf und Implementierung eines heterogenen
Blockchain-Konsortiums für ein

Lebensmittel-Lieferketten-Netzwerk

Design and Implementation of a Heterogeneous
Blockchain Consortium for a Food Supply Chain Network

Bearbeitungszeitraum: von 1. September 2021
bis 31. Januar 2022

1. Prüfer: Prof. Dr.-Ing. Christoph Neumann

2. Prüfer: Prof. Dr. rer. nat. Daniel Loebenberger

Ostbayerische Technische Hochschule Amberg-Weiden
Fakultät Elektrotechnik, Medien und Informatik

Bestätigung gemäß § 12 APO

Name und Vorname
der Studentin/des Studenten: Stangl, Philipp

Studiengang: Medieninformatik

Ich bestätige, dass ich die Bachelorarbeit mit dem Titel:

Entwurf und Implementierung eines heterogenen Blockchain-Konsortiums für ein
Lebensmittel-Lieferketten-Netzwerk

selbständig verfasst, noch nicht anderweitig für Prüfungszwecke vorgelegt, keine
anderen als die angegebenen Quellen oder Hilfsmittel benützt sowie wörtliche und
sinngemäße Zitate als solche gekennzeichnet habe.

Datum: 31. Januar 2021

Unterschrift:

Ostbayerische Technische Hochschule Amberg-Weiden
Fakultät Elektrotechnik, Medien und Informatik

Bachelorarbeit Zusammenfassung

Studentin/Student (Name, Vorname): Stangl, Philipp
Studiengang: Medieninformatik
Aufgabensteller, Professor: Prof. Dr.-Ing. Christoph Neumann
Durchgeführt in (Firma/Behörde/Hochschule): OTH Amberg-Weiden
Ausgabedatum: 1. September 2021 Abgabedatum: 31. Januar 2022

Titel:

Entwurf und Implementierung eines heterogenen Blockchain-Konsortiums für ein
Lebensmittel-Lieferketten-Netzwerk

Zusammenfassung:

In einem Lebensmittel-Lieferketten-Netzwerk befindet sich jedes Unternehmen in
einer Netzebene und gehört zu mindestens einer Lieferkette. Das bedeutet, dass eine
Organisation gleichzeitig und im Laufe der Zeit an mehreren Lieferketten teilnehmen
kann. Die derzeitigen Lösungen für Blockchain-fähige Lieferketten konzentrieren sich
auf eine einzelne Blockchain. Dies erfordert speziell für Unternehmen in Lieferketten-
Netzwerken ihre Daten auf mehreren Blockchains zu teilen (eine Blockchain für jede
Lieferkette). Außerdem haben die Unternehmen keine Kontrolle über die Datentrans-
parenz, das insbesondere beim Austausch sensitiver Daten über eine gemeinsame
Blockchain deutlich wird. Im Rahmen dieser Arbeit wird eine Lösung vorgestellt, die
es Unternehmen ermöglicht mit ihrer eigenen Blockchain (worauf Unternehmen ihre
unveränderlichen Daten speichern können) einer Konsortium Blockchain beizutreten.
Mechanismen zur Ermöglichung von Blockchain Interoperabilität tragen dazu bei,
die Vorteile unabhängiger, souveräner Blockchains zu bewahren und ermöglichen
gleichzeitig die gemeinsame Nutzung von Daten über Blockchain-Grenzen hinweg.
Eine Referenzimplementierung beweist die Machbarkeit dieses Konzepts.

Schlüsselwörter: Blockchain, Interoperabilität, Lieferketten Netzwerk

Abstract

In a food supply chain network, each organization is positioned in a network layer
and belongs to at least one supply chain. That means an organization may participate
in multiple supply chains at the same time and over time. Current solutions for
blockchain-enabled supply chains are centered around one standalone blockchain. This
requires organizations to share their data on multiple blockchains (one blockchain for
each supply chain). Furthermore, organizations have no control over data transparency.
In the context of this thesis, a solution is presented that allows organizations to
join a consortium blockchain with their own blockchain where they can store their
immutable data. Mechanisms for enabling blockchain interoperability help preserve
the benefits of independent sovereign blockchains while allowing for sharing of data
across blockchain boundaries. A prototype implementation proves the feasibility of
the concept.

Philipp Stangl Bachelorarbeit

Contents

I Foundations 1

1 Introduction 2
1.1 Fundamentals . 3

1.1.1 Blockchain Technology . 3
1.1.2 Food Supply Chain Network . 5

1.2 Motivation . 6
1.3 Research Questions . 7
1.4 Thesis Structure . 8

2 State of the Art 9
2.1 Blockchain-Enabled Supply Chain . 9

2.1.1 Solo-Chain Approaches . 9
2.1.2 Multi-Chain Approach . 11

2.2 Blockchain Interoperability Framework 11
2.2.1 Public Connectors . 11
2.2.2 Hybrid Connectors . 12

2.3 Blockchain of Blockchains . 12
2.3.1 Network of Heterogeneous State Machines 12
2.3.2 Unified State Machine with Heterogeneous Shards 13

2.4 Summary . 14

II ChainFresh 16

3 The ChainFresh Approach 17
3.1 The Benefits for Supply Chain Participants 17

3.1.1 Interoperability . 18
3.1.2 Controlled Transparency . 18

3.2 Architectural Overview of ChainFresh . 19
3.2.1 Presentation Tier . 19
3.2.2 Application Tier . 19
3.2.3 Relay Tier . 21

3.3 Decision for the Substrate Framework . 22
3.4 Summary . 22

i

Philipp Stangl Bachelorarbeit

4 Presentation Tier 24
4.1 “Members” View . 25
4.2 “Organizations” View . 26
4.3 “Products” View . 26
4.4 “Shipments” View . 27
4.5 “Traces” View . 28
4.6 “Documents” View . 29

5 Application Tier 30
5.1 Collator Node Architecture . 30
5.2 Business Logic . 31

5.2.1 Role-Based Access Control . 32
5.2.2 Registrar . 32
5.2.3 Document Registry . 33
5.2.4 Product Registry . 33
5.2.5 Product Tracking . 34

5.3 Cumulus . 36
5.4 Summary . 36

6 Relay Tier 37
6.1 Parachain Registration . 37
6.2 Parachain Block Inclusion . 37
6.3 Cross-Chain Asset Transfers . 38

6.3.1 Opening a Messaging Channel . 38
6.3.2 Executing a Cross-Chain Transfer 39
6.3.3 Closing a Messaging Channel . 39

6.4 Summary . 40

III Conclusions 41

7 Evaluation 42
7.1 Cross-Chain Messaging . 42

7.1.1 Evaluation Approach . 42
7.1.2 Adapted Fluid Dynamics Equations 43
7.1.3 Discretization . 44
7.1.4 Evaluation Workflow . 45
7.1.5 Numerical Results . 46

7.2 Hard Disk Footprint . 47
7.3 System Limitations . 48
7.4 Summary . 49

8 Future Work 50

9 Conclusion 51

A ChainFresh System 53

CONTENTS ii

Philipp Stangl Bachelorarbeit

Bibliography 56

Glossary 60

List of Figures 62

List of Tables 64

CONTENTS iii

Philipp Stangl Bachelorarbeit

Part I

Foundations

1

Philipp Stangl Bachelorarbeit

Chapter 1

Introduction

The food industry comprises companies dedicated to manufacturing and processing
raw materials and semi-finished products from agriculture, forestry, and fishing. In
recent years, food supply chains have progressed from shorter, independent to more
unified, coherent relationships among supply chain participants [5]. Developing long-
term, and collaborative relationships requires evolutionary technological solutions to
simultaneously retain a competitive edge.

Blockchain technology is presented as a way to reduce fraud, increase supply chain
visibility, and provide supply chain optimization. Current applications of blockchain
technology in food supply chain management (e.g., IBM Food Trust) rely mainly on a
single distributed ledger. The implications on supply chain networks are twofold: (i)
organizations participating in multiple supply chains must share their data on multiple
blockchains, and (ii) participants may see information originally not intended for them
because all participants can view every transaction on a distributed ledger.

A multi-chain1 approach is required, allowing organizations to store immutable data
on their own blockchain. A decentralized hub coordinates the cross-chain exchange of
digital assets among the heterogenous blockchains. The hub further ensures that all
parties comply to the overarching rules of the consortium.

This bachelor’s thesis presents a solution that supports interoperability and controlled
transparency in a heterogeneous, blockchain-enabled supply chain network. It enables
divergent types of consensus systems to interoperate in a decentralized federation,
allowing public and private blockchains to have controllable access to each other.

1The term multi-chain is separated by a hyphen because an enterprise blockchain solution called
Multichain is available on the market. Multichain is not related in any way to this work.

2

Philipp Stangl Bachelorarbeit

1.1 Fundamentals

This section introduces definitions regarding blockchain technology and Food Supply
Chain Networks (FSCNs). To begin, the definition of blockchain technology as a
decentralized ledger for tracking one or more digital assets on a Peer-to-Peer (P2P)
network is expanded in section 1.1.1. Section 1.1.2 describes an FSCN in terms of the
involved parties, business processes, and product characteristics.

1.1.1 Blockchain Technology

Blockchain technology, introduced by the Bitcoin protocol [26] in 2008, is a Distributed
Ledger Technology (DLT)2. Today, blockchain is the most commonly used data structure
for distributed ledgers [21]. The combination of cryptographic and game-theoretic
concepts enables immutable transactions and automatic consensus about its state by
the parties involved. This section provides an outline of blockchain-related terms that
are essential to understanding the concept.

Blockchain Types

There are three different types of blockchain systems (depicted in figure 1.1) [45].
Public blockchains are considered permissionless because, in principle, everyone can
attend the consensus process and read the stored data. The application of public
blockchains has several use cases, including cryptocurrencies and document validation.
In a consortium blockchain, an elected group of participants is allowed to attend the
consensus process. The stored data may be read by selected members or by the public.
Supply chain and research environments are two exemplary use cases for this sort of
blockchain. In a private blockchain, all participants belong to the same organization,
and the public cannot access the system. Two use cases for this final blockchain type
are banking and asset ownership. Private and consortium blockchains are considered
permissioned blockchains because, in both cases, only a limited group can attend the
consensus process.

Blockchain

Permissionless

Public

Permissioned

Private Consortium

Figure 1.1: Types of blockchain

2The terms DLT and blockchain technology are often used interchangeably. However, blockchain is
one type of a distributed ledger. Other types of distributed ledgers include Directed Acyclic Graph,
Hashgraph, Holochain, and Cerberus.

Kapitel 1. Introduction 3

Philipp Stangl Bachelorarbeit

Blockchain Data Structure

A blockchain denotes a special data structure whose elements, the blocks, are linked
together by cryptographic hash functions. Figure 1.2 illustrates that each block is
separated into two parts: a body and a header. A block cryptographically binds the
body (i.e., a set of transactions) to a header. The block body is used to generate a
unique identifier for that block. The block header points to the unique identifier of
the preceding block, known as the parent block. Since each block has a pointer to its
parent block, the blocks can be deterministically ordered.

Figure 1.2: Blockchain data structure (adopted from Zheng et al. [45])

Peer-to-Peer Network

The blockchain data structure is distributed across a P2P network (figure 1.3), which
is a communications model for decentralized networks. The model consists of a set
of devices (called nodes) that collectively store and share files. The P2P architecture
of blockchain technology is based on the concept of decentralization. Each node acts
as an individual peer. Therefore, communication is conducted without any central
administration or server. This means, in theory, that all nodes perform the same tasks
and have equal power.

Block Production

The shared ledger’s content is not altered by changing existing blocks. Instead, new
blocks with instructions on how the ledger state should change from one block to
another become appended to the blockchain. These instructions are commonly referred
to as transactions. The state transition function defines the rules associated with how
the ledger can change. Such rules can either be complex or simple; for instance, users
can only exchange assets that they own. Once a valid set of transactions is collected,
they are put into the block content. Afterward, the block is placed at the end of the
chain. This block production process allows the underlying distributed ledger to
change over time.

Kapitel 1. Introduction 4

Philipp Stangl Bachelorarbeit

Node

Node

Node Node

Figure 1.3: Schematic diagram of a P2P network

Block Finalization

After a new block has been produced, it can be shared with others who want to
construct the same shared ledger. However, since blockchains are decentralized, it is
possible that two different yet still valid blocks compete for the same position at the
end of a chain. A block finalization mechanism determines which chain of blocks is
the canonical blockchain: for any given blockchain, there should only be one true final
state of the shared ledger. Any alternative states of the blockchain are known as forks.

1.1.2 Food Supply Chain Network

A supply chain is an interconnection of organizations, activities, resources, people, and
information. Organizations along a food supply chain are dedicated to growing and
processing raw materials (e.g., fruits) and semi-finished products (e.g., fruit juices) for
delivery to the end customer. Food supply chains are complex and affected by various
factors such as the sociopolitical environment [39]. Regulatory bodies such as the
US Department of Agriculture (USDA) aim to protect consumer health and increase
economic viability. Thus, they release frequent updates to ensure their criteria is met
by food supply chains.

In an FSCN, more than one supply chain and more than one business process can be
identified, both parallel and sequential in time. The parties involved in the business
processes depend on the type of FSCN. This thesis considers an FSCN for fresh
agricultural products.

Van der Vorst, Beulens, and Beek have identified farmers, retailers, and their logistics
service suppliers as parties involved in an FSCN for fresh agricultural products [39].
Figure 1.4 depicts such a supply chain at the organization level within the context
of an FSCN for fresh agricultural products. Each organization is positioned in a
product lifecycle stage and belongs to at least one supply chain. That means an
organization can have multiple suppliers and customers at the same time and over
time. Figure 1.4 visualizes this by showing the perspective of the processor (bold
lines), who has multiple connections to distributors and farmers. Other stakeholders
such as nongovernmental organizations, governments, and shareholders are indirectly
involved at each stage of the product lifecycle.

Kapitel 1. Introduction 5

Philipp Stangl Bachelorarbeit

Other stakeholders (NGO’s, government, shareholders, …)

Legend

Farmer

Processor

Distributer

Retailer

Business Proccess

Figure 1.4: Schematic diagram of an FSCN (based on Van der Vorst, Beulens, and Beek [39])

1.2 Motivation

The ability to trace ingredients of any food or product back to their origin in a food
supply chain is important. For example, if one is interested in eating organic foods,
it could be valuable to know the food’s origins. To achieve traceability, end-to-end
transparency (i.e., transparency at all stages of a product lifecycle) in a supply chain is
required. This transparency is made possible by monitoring each step of the process,
capturing all related data, and organizing it in a data storage space.

In today’s food supply chains, data is often stored in centralized storage, resulting
in organizational silos [29]. As a result, supply chain visibility is limited. Blockchain
technology, on the other hand, is built on the premise of decentralization. IBM Food
Trust is an example of a blockchain-enabled solution in food supply chains. The
underlying distributed ledger is a commercial distribution of Hyperledger Fabric. IBM
Food Trust promises organizations to provide a permission-based, shared view of food
information with convenient data publishing and controlled sharing of information. In
the context of FSCNs, where players participate in multiple supply chains, this would
require them to share their data on multiple blockchains. Furthermore, these players
collaborate and participate. The state-of-the-art section (2.1) discusses blockchain-
enabled supply chain approaches in more detail.

Hyperledger Labs has attempted to reduce the number of parties seeing irrelevant
data by isolating different data groups with Private Data Objects (PDOs) [6]. As
opposed to raw data access, the access occurs off-ledger in secure enclaves using
Intel Software guard extensions. Doing so should preserve data confidentiality and
execution integrity and enforce data access policies. The distributed ledger acts as
a single authoritative instance, which verifies and records transactions produced by
PDOs. This approach adds software complexity. As such, opportunities for weaknesses
can emerge to be capitalized on by malicious actors.

Kapitel 1. Introduction 6

Philipp Stangl Bachelorarbeit

1.3 Research Questions

This section clearly defines the scope and direction of this thesis. The first and second
research questions are outlined along with the problem statement and objectives.

Problem Statement 1: This thesis identifies a general problem with recording all
transactions of a supply chain on a standalone blockchain. The implications are
twofold: First, this can lead to varying characteristics of the deployed blockchains.
According to a recent American Productivity & Quality Center survey [3], supply
chain professionals rate interoperability among the top five blockchain hurdles. This
circumstance can become especially challenging in supply chain networks, where a
blockchain is required for each supply chain in the network. Secondly, in principle, all
transactions can be viewed by all participants who have access to the distributed ledger.
Additionally, organizations need flexibility to adapt their blockchain to integrate
new technological advancements (for competitive advantage) or to meet changing
requirements of regulatory bodies.

Research Question 1 (RQ1): How can a blockchain-enabled supply chain network be
designed with interoperability and controlled transparency?

RQ1 Objectives: With ChainFresh, the prototype presented in this thesis, I aim to
provide a heterogeneous blockchain consortium that allows organizations (trading
partners) to join with their own blockchain, where they store their immutable data.
Furthermore, organizations should be able to register shipments on the blockchain and
track their journey through the supply chain. Here, the user should be able to monitor
a shipment’s storage and transportation conditions via a Graphical User Interface
(GUI). Additionally, data integration is required to communicate with the external
world, such as by accessing and fetching data from an external service. Finally, the
application-specific blockchains should be able to interoperate with each other to create
cross-chain asset transfers.

Problem Statement 2: The second research question follows from the results of the
first research question. Currently, no blockchain evaluation approach is available for a
multi-chain environment. Thus, there is no solution available to quantitatively evaluate
cross-chain communication, or cross-chain message passing in particular.

Research Question 2 (RQ2): How can cross-chain message passing be quantitatively
evaluated in a heterogeneous multi-chain?

RQ2 Objectives: I aim to provide a quantitative evaluation approach for cross-chain
messaging under a simulated realistic workload for a running system. This should
enable capturing the variability of the transfer volume in cross-chain messaging
channels among multiple blockchains. Furthermore, the produced on-chain data must
be extracted and processed and the results visualized.

Kapitel 1. Introduction 7

Philipp Stangl Bachelorarbeit

1.4 Thesis Structure

This final section provides an overview of the design process and applied methods
used in shaping and implementing the functionality of ChainFresh. In addition to
the chronological description of the steps performed, the structure of this thesis is
explained in parallel by referring to the corresponding chapter in which a single step is
described in detail. Figure 1.5 depicts an overview of this thesis’s three-part structure.

Part I, the foundation of this thesis, comprises two chapters. The fundamentals, thesis
motivation, research questions, and thesis structure are outlined in the introduction.
The primary methodology followed is the three-cycle view of design science research
by Hevner [19]. The development of artifacts in each cycle supports the rejection or
confirmation of the hypotheses established in chapter 1. Besides the primary method,
the current section outlines the auxiliary methods in use to produce the artifacts.
Chapter 2 provides a synthesis on state of the art in the research domain through a
literature review of related work. The chapter discusses blockchain-enabled supply
chain approaches and blockchain interoperability approaches. Ideas from those two
domains are constitutive to ChainFresh.

Part II provides an answer to RQ1. Unified Modeling Language (UML) and a system
modeling approach are used to compose ChainFresh, as a distributed system, into a
three-tier architecture to obtain modules with a well-defined interface and scope of
operation. Chapter 3 introduces the ChainFresh concept and provides an overview
of the three-tier architecture. The presentation tier is explained in chapter 4, the
application tier in chapter 5, and the relay tier in chapter 6. To ease development of the
prototype, several frameworks and technologies are used. The substrate framework is
employed for the modular blockchain development.

Part III concludes the thesis. Chapter 7 provides a technical evaluation of the Chain-
Fresh system. The assessment encompasses the quantitative evaluation for cross-chain
messaging, the hard disk footprint of the ChainFresh artifacts, and a discussion about
current system limitations. The evaluation approach for cross-chain messaging aims to
provide an answer to RQ2 by monitoring the system under a realistic load. Chapter 8
outlines recommendations for future work. Finally, chapter 9 summarizes the results
and points to possible implications in practice.

II ChainFresh III ConclusionsI Foundations

5 Application Tier 6 Relay Tier

7 Evaluation1 Fundamentals

8 Future Work2 State of the Art

9 Conclusion

4 Presentation Tier

3 The ChainFresh Approach

Figure 1.5: Thesis Structure

Kapitel 1. Introduction 8

Philipp Stangl Bachelorarbeit

Chapter 2

State of the Art

This chapter discusses related work explored in the research for ChainFresh. Section 2.1
provides an overview of blockchain-enabled supply chain approaches. Section 2.2
presents the Blockchain Interoperability Framework (BIF), which classifies solutions
for blockchain interoperability in three categories, the first two of which are public and
hybrid connectors. Section 2.3 focuses on the third category, Blockchain of Blockchains
(BoB).

2.1 Blockchain-Enabled Supply Chain

In blockchain-enabled supply chains, information across the product lifecycle is
recorded on a ledger for sharing with all supply participants. This can result in
faster access to information (e.g., manufacturing information) and thus greater supply
chain transparency. Notably, Longo et al. [25] have found that blockchain technology
can increase collaboration because it drives competing supply chain companies to
share data and information.

This section identifies two categories of blockchain-enabled supply chain approaches.
In the literature, there seems to be no general name defined for each identified approach.
Therefore, a generic name is derived from the associated related work. Section 2.1.1
discusses the category of solo-chain approaches, wherein all supply chain transactions
are recorded on a single blockchain. This category includes the software connector
approach, which couples an enterprise information system to a blockchain. In the
same category is the smart contract approach, whereby the supply chain management
logic is encapsulated in so-called smart contracts. Finally, section 2.1.2 discusses the
multi-chain approach that involves multiple domain-specific blockchains.

2.1.1 Solo-Chain Approaches

In the solo-chain approach, transactions happening in the supply chain are recorded on
a single blockchain. Those blockchains are typically a copy of an existing open-source
protocol or are built from scratch. Either way, the development of individual systems

9

Philipp Stangl Bachelorarbeit

leads to the tendency of varying characteristics; thus, the blockchains of different
organizations rarely work well together. An American Productivity & Quality Center
survey [3] from 2020 reveals that a lack of interoperability has been rated among the
top five blockchain challenges by supply chain professionals.

The most commonly used blockchain for the solo-chain approach is Ethereum. The
Ethereum virtual machine is what enables Ethereum to run smart contracts [42], digital
contracts containing a collection of data and functions that resides at a specific address
on the blockchain. Every time a blockchain participant tries to interact with a smart
contract (e.g., executing a transaction that invokes a state-changing function of the
smart contract), a transaction fee must be paid. The transaction fee is called gas on the
Ethereum blockchain. Gas is denoted in the native cryptocurrency Ether [2]. While the
cost of gas for each operation is defined in the Ethereum software and is constant, the
gas price depends on the number of active blockchain participants.

Smart Contract Approach

An increasingly popular approach to blockchain-enabled supply chains is the use of
smart contracts. For instance, Wang et al. [41] have proposed a smart contract-based
product traceability system. The system perpetually records all product transferring
histories in a distributed ledger by using smart contracts forming a chain that can trace
back to the source of the products. Hasan et al. [17] have proposed a smart contract-
based supply chain management solution. The proposed solution utilizes Ethereum
smart contracts to manage shipment conditions, automate payments, legitimize the
receiver, and issue a refund in case of violations to predefined shipping conditions
(e.g., temperature, humidity, pressure).

In both cases, this approach appears to have a major drawback for businesses. One
cannot update the smart contract (except for its name) once the contract is deployed on
the network. In general, organizations may not risk deploying faulty smart contracts
that are immutable and suffer the irreversible consequences of their automatic enforce-
ment. Moreover, smart contracts rely on their blockchain core ledger for real-world
data integration, which typically utilizes oracles. A blockchain oracle is an external
service that queries, verifies, and authenticates external data sources. It typically
listens to blockchain events. In the case of an event, it relays the requested information.
Since oracles are third-party services, they might have several flaws regarding security,
scalability, and infrastructure efficiency.

Software Connector Approach

Longo et al. have presented a software connector to connect an Ethereum-like public
blockchain with an enterprise information system [25]. The software connector allows
companies to share information with their partners with different levels of visibility.
This is achieved similarly to PDOs with visibility groups (i.e., the companies that are
authorized to view their data). The supply chain data is stored in an off-chain data
storage. It is all the information regarding demand forecasts and inventory levels.

Kapitel 2. State of the Art 10

Philipp Stangl Bachelorarbeit

Then a smart contract on the blockchain publishes only a unique key (hash sum) that
maps to the data on-chain.

2.1.2 Multi-Chain Approach

Schulz and Freund [31] have proposed a blockchain-enabled distributed supply chain.
Their main idea is a network-centric design, which incorporates domain-specific
blockchains for handling specific business process and a hub or main blockchain that
connects the blockchains to communicate with each other. Schulz and Freund have
reasoned, “Systems big enough to cope with a large amount of data, fast enough
to cope with a high frequency of transactions, specialized to be extremely secure
for certain purposes or to be easily accessible for customers have to be split up in
subsystems that need one hub, bringing them all together” (ch. 4, p. 281). To construct
such a system, Schulz and Freund have identified three essential pillars: (i) a P2P
network with client nodes that are paired with a user interface and permissions, (ii) a
file storage either on the blockchain or on a P2P file system (e.g., InterPlanetary File
System), and (iii) blockchain interoperability to enable the domain-specific blockchains
to communicate with each other.

2.2 Blockchain Interoperability Framework

A limiting factor of the solo-chain approach is that resources are strictly confined to
the underlying distributed ledger. Blockchain interoperability involves the ability of
independent distributed ledger networks to communicate with each other. Various
approaches have been established to provide blockchain interoperability, resulting in
a highly fragmented market [4]. Belchior et al. were the first to conduct a systematic
literature review on blockchain interoperability solutions. Their main contribution is
the BIF, a framework that aims to provide a holistic overview through analyzing the
solution space by asking the following six questions: Who controls the cross-chain
transaction process?; What assets are exchanged?; Where are the assets transferred
from and transferred to (i.e., what are the source and target ledgers)?; When is the
execution of cross-chain transactions defined: at design time or run time?; and How are
cross-chain transactions realized on the underlying distributed ledgers? Furthermore,
the survey classifies studies into three main categories: public connectors, hybrid
connectors, and BoB.

This section presents the concepts of public and hybrid connectors for consortium
blockchains. The next section (2.3) is dedicated only to the discussion of the BoB due
to its primary importance for this work.

2.2.1 Public Connectors

The public connectors category identifies blockchain interoperability approaches
across public blockchains. The first type of public connectors is sidechains. Here,
one blockchain (the main chain) considers another blockchain as an extension of itself

Kapitel 2. State of the Art 11

Philipp Stangl Bachelorarbeit

(the sidechain). The main chain maintains the distributed ledger of assets and is
connected to one or multiple sidechains. A sidechain is used to offload transactions
from the main chain. The sidechain processes the offloaded transactions and redirects
the outcome back to the main chain. To achieve this, the main chain and sidechain
must communicate with each other using an appropriate cross-chain communication
protocol. Sidechains are not suitable for a multi-chain approach (section 2.1.2) because
they are not independent blockchains.

Other solutions in this category include notary scheme and hashed time-locks contracts.
Both solutions are intended for the exchange of cryptocurrencies. Thus, they are not
suitable for an application in supply chains.

2.2.2 Hybrid Connectors

The hybrid connector category is composed of blockchain interoperability approaches
that neither fit into the public connectors nor BoB category. The BIF categorizes three
solutions in the category hybrid connectors. The first scheme involves trusted relays
and typically appears in a permissioned blockchain as a trusted escrow party redirects
transactions from a source blockchain to a target blockchain.

Blockchain-agnostic protocols are essential for BoB (discussed in the next section 2.3). They
enable cross-chain communication between arbitrarily distributed ledger technologies
by providing a blockchain abstraction layer that exposes a set of uniform operations
allowing a decentralized application to interact with blockchains without the need of
using different APIs.

Finally, blockchain migrators allow blockchain-state migration across blockchains. First,
the state is locked on the source blockchain; then the state is recreated in the target
blockchain.

2.3 Blockchain of Blockchains

The BIF identifies a third category of interoperability solutions, BoBs. Unlike sidechains,
they are not an extension of one blockchain but rather independent blockchains
that interoperate among each other. According to Belchior et al., the most widely
adopted BoBs are Cosmos [23] and Polkadot [43]. This section discusses both, each
with its implemented approach. The discussion is driven by the chosen security
model, consensus, and cross-chain communication: first Cosmos, with the network of
heterogeneous state machines approach (section 2.3.1), followed by Polkadot, with the
unified state machine with heterogeneous shards approach (section 2.3.2).

2.3.1 Network of Heterogeneous State Machines

This is a decentralized network of independent blockchains (the heterogeneous state
machines). The best known implementation of this approach is Cosmos. Independent
blockchains called zones are connected by Cosmos network hubs, the digital ledgers

Kapitel 2. State of the Art 12

Philipp Stangl Bachelorarbeit

responsible for data transfer between zones. They can transfer data to other zones
directly or via hubs. Both methods utilize the Interblockchain Communication Protocol
(IBC) protocol [14] by Goes.

Security Model

Cosmos uses a bridge-hub model to connect blockchains with independent security
guarantees. As a result, inter-chain communication is bound by the trust that the
source zone has in the target zone. Each zone is responsible for its security and must
provide its block finalization by its own means.

Consensus

Cosmos uses the Tendermint [22] consensus protocol, a round-robin protocol with the
provision of instant finality. That means it involves the production and finalization of
one block at a time.

Cross-Chain Communication

Cosmos implements the IBC protocol for cross-chain communication. Currently, the
protocol only supports the cross-chain transfer of tokens, which are blockchain-based
abstractions of assets such as currency, resources, access, identity, or collectibles that
a blockchain account can own [2]. Because each zones provides its own security,
interacting zones must trust each other and accept the risks of each other’s failures
during cross-chain communication.

2.3.2 Unified State Machine with Heterogeneous Shards

Wood1 has proposed Polkadot, an implementation of the unified state machine with
heterogeneous shards approach. In this approach, the network consists of parallel
application-specific blockchains called parachains that are connected to the main chain,
known as the relay chain. Each parachain is a heterogeneous shard that can run in
parallel to the relay chain.

Security Model

Polkadot has a shared security model. The relay chain contains the global state of the
entire system and approves the state transition correctness of all connected parachains.
This allows blockchain technologies that do not trust each other to interact with each
other.

1Gavin James Wood, British computer scientist, is one of Ethereum’s co-founders. While awaiting
the release of a new Ethereum specification with a scalability solution, later known as sharding, Wood
devised the vision for a heterogeneous multi-chain.

Kapitel 2. State of the Art 13

Philipp Stangl Bachelorarbeit

Consensus

Polkadot uses a hybrid consensus model with two algorithms. Blind Assignment of
Blockchain Extension (BABE) [1] for block production and GHOST-based Recursive An-
cestor Deriving Prefix Agreement (GRANDPA) [34] for block finalization. GRANDPA
is a Byzantine Fault Tolerance (BFT) consensus protocol finalizing one of the existing
chain of blocks without producing new blocks. The authors based their research on
the idea that block finalizing means simultaneously finalizing of all its previous blocks.
Therefore, there is no need to vote for each block but only for chains that may consist
of hundreds or thousands of blocks. GRANDPA allows the reduction of the network
load and an increase in system performance by approving a large number of blocks
simultaneously. However, this may increase the delay of a particular block approval.
Notably, GRANDPA and Tendermint are both BFT-based algorithms and showcase
quadratic transport complexity. Cosmos, however, can only finalize one block at a time.

Cross-Chain Communication

Parachains communicate through the Cross-Chain Message Passing (XCMP) protocol,
a queuing communication mechanism based on a Merkle tree. XCMP is designed to
communicate arbitrary messages between parachains. Messages are sent together with
the next parachain block (short: parablock), while the relay chain blocks include only
the proof of post. All messages must be processed in a proper order, for which a chain
of Merkle proofs is used. However, XCMP is still under development. Therefore, the
stop-gap protocol is Horizontal Relay-routed Message Passing (HRMP). As soon as
XCMP is fully developed, it can replace HRMP. The primary difference between the
two is the data stored on the relay chain. In HRMP, the relay chain stores the full
message with its payload. XCMP, on the other hand, will only store a reference to the
payload. The target parachain will be responsible for decoding the message payload.

2.4 Summary

This chapter discussed blockchain-enabled supply chain approaches including the
solo-chain approach with the smart contract and software adapter variant, as well as
the multi-chain approach. A new approach is developed in the following chapters that
builds on the insights from the multi-chain approach. This prototype should provide
blockchain interoperability and circumvent transaction fees.

For an overview of the state of the art in blockchain interoperability solutions for the
system to develop, the BIF was briefly introduced. It categorizes current solutions into
the categories of public connectors, hybrid connectors, and BoBs. The BoB category
was identified as the most suitable for the multi-chain approach. Therefore, the two
widely used solutions in this category, Polkadot and Cosmos, were further discussed
regarding their underlying approach, as well as security model, consensus, and cross-
chain communication abilities.

Polkadot is an implementation of the unified state machine with heterogeneous shards

Kapitel 2. State of the Art 14

Philipp Stangl Bachelorarbeit

approach. It uses a hybrid consensus model, separating block production (BABE) from
finality (GRANDPA). This allows for blocks to be rapidly produced and finalized at
a slower pace without risking slower transaction speeds or stalling. Unlike Cosmos,
Polkadot provides a shared security model, cross-chain transfers of arbitrary data. The
finalization of multiple blocks at a time justifies the quadratic transport complexity,
thus providing the best foundation for the design and implementation of ChainFresh.

Kapitel 2. State of the Art 15

Philipp Stangl Bachelorarbeit

Part II

ChainFresh

16

Philipp Stangl Bachelorarbeit

Chapter 3

The ChainFresh Approach

The ChainFresh approach provides an implementation of the multi-chain approach
(section 2.1.2). The blockchain consortium comprises a multi-chain ecosystem for
organizations. Each organization is allowed to participate in the consensus process.
The first section (3.1) of this chapter describes the solution approach in a nontechnical
way. In the following section (3.2), an overview of the ChainFresh architecture is
presented by briefly introducing each individual tier. Finally, the choice of substrate as
the development framework for the blockchains of ChainFresh is justified in section 3.3.

3.1 The Benefits for Supply Chain Participants

This section highlights the two main benefits of the ChainFresh approach for supply
chain participants: interoperability (section 3.1.1) and controlled transparency (sec-
tion 3.1.2). For this purpose, the benefits are illustrated in the context of the following
example, depicted in figure 3.1, which considers a single supply chain within an FSCN
for organic strawberries with bio-farmer, processor, distributor, and retailer.

RetailerDistributorProcessorBio-Farmer

Figure 3.1: Illustrative example of a single supply chain (opaque) within an FSCN

17

Philipp Stangl Bachelorarbeit

3.1.1 Interoperability

According to Pan, Zhong, and Qu, interoperability should be considered at a physical
level (e.g., standardized handling), organizational level (e.g., interorganizational proto-
cols), business level (e.g., business models with shared value), and digital level (e.g.,
interoperable information systems) [27]. This thesis considers digital-level interoper-
ability in the context of blockchain technology. The state of the art (chapter 3) initially
identifies three types of blockchain interoperability: between different (homogeneous
or heterogeneous) blockchains, between decentralized applications using the same
blockchain (solo-chain), and blockchain in combination with other technologies (e.g.,
enterprise systems).

ChainFresh aims to provide a permanent and shared record of food system data
that connects participants across the FSCN. This is done through the use of a main
blockchain, the ChainFresh relay chain. The sole purpose of the relay chain is to
coordinate and share appropriate data and ensure all participants are complying to
overarching rules of the consortium. Supply chain participants can set up their own
ChainFresh parachain, which is a blockchain that runs in parallel to the ChainFresh
relay chain. A parachain has a set of predefined modules for managing access, docu-
ments, products and shipments and enabling interoperability. Therefore, ChainFresh
provides interoperability among different heterogeneous blockchains. Supply chain
participants can add or remove their parachain from the consortium. For instance, a
distributor can join the consortium blockchain of a food supply chain when delivering
shipments from a processor to a supermarket. After the shipments have been deliv-
ered, the distributor can remove their parachain. Because the relay chain maintains a
permanent and shared record of food system data, the information will not be lost for
the consortium after the distributor has left. Through interoperability, organizations
can share immutable data with other participants in their supply network.

3.1.2 Controlled Transparency

Before defining controlled transparency and how ChainFresh aims to provide it, the
term transparency must be defined in the context of supply chains. Egels-Zandén,
Hulthén, and Wulff [9] have articulated that transparency “comprises corporate disclo-
sure of (i) the names of the suppliers involved in producing the firm’s products (i.e.,
traceability), (ii) information about sustainability conditions at these suppliers, and (iii)
the buying firms’ purchasing practices” (ch. 2, p. 96).

In the context of ChainFresh, controlled transparency allows each organization to
set up and manage its own parachain. This allows an organization to pinpoint the
communication with trading partners by opening messaging channels only when they
are required for transferring sensitive information, which should not be accessible by
other organizations. For instance, a processor can choose to share a delivery document
to only one of his distributors. Every other participant should not be able to see
the content of the document. This does not effect the overall transparency, because
information about product conditions and the parties involved in delivering the food
from bio-farmer to retailer are openly shared among the supply chain participants.

Kapitel 3. The ChainFresh Approach 18

Philipp Stangl Bachelorarbeit

3.2 Architectural Overview of ChainFresh

ChainFresh as a distributed system is a composition of three tiers: presentation,
application, and relay. Each tier is composed of multiple components defining its
distinct scope of work. A high-level architecture overview is outlined in figure 3.2.

Application Tier

Presentation Tier

Relay Tier

Figure 3.2: The three-tier system architecture of ChainFresh

3.2.1 Presentation Tier

To provide the user with convenient access to the ChainFresh system, the presenta-
tion tier is responsible for interacting with the application tier through a websocket
connection. Any websocket-capable client or device can communicate with the end-
points exposed by the application tier. The user interacts with a GUI to manage the
permissions of participating members, register shipments and products, and trace ship-
ments along the supply chain. A browser extension is required to manage blockchain
accounts and to sign transactions within those accounts.

3.2.2 Application Tier

The application tier consists of the parachains, their runtime modules, and off-chain
processes. Collators are the actors of the parachains. Collators are responsible for
collating user transactions and producing state-transition proofs for the validators of
the parachain to find consensus. Collators do not directly participate in the consensus
process. The primary modules of a collator are the business logic, Cumulus, Off-Chain
Worker (OCW), and transaction pool. Figure 3.3 illustrates the application tier and
how the collator node modules interact to produce a parablock. Application-specific
business logic is executed based on the extrinsics (transactions) in the transaction pool
(holds all valid and invalid transactions) and realizes the main functionality within the
ChainFresh system: access control using Role-based Access Control (RBAC); managing
decentralized identities for member organizations; registering products, shipments, or
documents; and monitoring shipments through the supply chain.

Kapitel 3. The ChainFresh Approach 19

Philipp Stangl Bachelorarbeit

Off-Chain Service

execute

handle off-chain computation

Business Logic

submit OCW extrinsic

Transaction Pool

Off-Chain Worker

submit XCM extrinsic

handle cross-chain messaging

Cumulus

APPLICATION TIER

Current
Parachain
Block

Genesis
Parachain
Block

send and fetch
data

Collator Node

produce block

HTTP connection

Consensus

Legend

Blockchain

Function Call

Collator

Figure 3.3: The application tier of the ChainFresh system

The business logic is decomposed in tightly coupled modules called pallets that
conform to the Framework for Runtime Aggregation of Modularized Entities (FRAME).
The business logic makes use of Cumulus for handling Cross-Chain Messaging (XCM)
and the OCW for off-chain tasks. The OCW is primarily used for sending and fetching
data to and from the off-chain service via HTTP for product-tracking status updates.
Once Cumulus and the OCW have finished their task, they submit an extrinsic to the
transaction pool for inclusion in a block. The business logic itself is decomposed into
tightly coupled modules called pallets that conform to the FRAME. Figure 3.4 depicts
the business logic pallets, each with its provided functionality that can be invoked
with extrinsics.

Business Logic

Product
Tracking

RegistrarAdd member to
organization

Create role

Revoke access
RBAC

Assign role

Add administrator

Create organization

Document
Registry Register document

Product
Registry

Register product

Register shipment

Track scan operation
for shipment

Track delivery operation
for shipment

Figure 3.4: An overview of the business logic, decomposed into pallets

Kapitel 3. The ChainFresh Approach 20

Philipp Stangl Bachelorarbeit

3.2.3 Relay Tier

The relay chain, in the relay tier, is the central hub in the network of heterogeneous
blockchains, the parachains. The relay chain, depicted in figure 3.5, provides parachains
with parablock validation and allows them to communicate with each other using the
XCM format for cross-chain messaging.

Validators are the actors of the relay chain and have three responsibilities: (1) to
verify that the information contained in parablocks is valid such as the identities
of the transacting parties, (2) to participate in the consensus mechanism to produce
the relay chain blocks based on validity statements from other validators, and (3)
to handle cross-chain messages. For validators to fulfill their responsibilities, they
are equipped with six primary runtime modules. The inclusion module handles the
inclusion and availability of parablocks. In addition, shared manages the shared storage
and configurations for other validator modules. The paras module manages the chain-
head and validation code for parachains. The scheduler is responsible for parachain
scheduling as well as validator assignments for the consensus mechanism. The validity
module addresses secondary checks and disputes resolution for available parablocks.
Finally, the XCMP module handles cross-chain messages and ensures that the messages
are relayed to the receiving parachain.

An integral part of cross-chain communication is the establishment of a cross-chain
messaging channel between the validators of two communicating parachains. Burdges
et al. [7] have stated that a messaging channel aims to guarantee four things: “First that
messages arrive quickly; second that messages from one parachain arrive to another
in order; third that arriving messages were indeed sent in the finalised history of the
sending chain; and fourth that recipients will receive messages fairly across senders,
helping guarantee that senders never wait indefinitely for their messages to be seen”
(section 4.4.3, p. 19).

RELAY TIER

Scheduler

Validator Node

XCMP

Inclusion Paras Shared

Cross-Chain Messaging

validate parachain block and produce relay chain block

Validity

Cross-Chain Messaging Channel

Genesis
Relay Chain
Block

Current
Relay Chain
Block

Organization A
Validators

Organization B
Validators

Messaging

Consensus

Legend

Relay Chain

Figure 3.5: The relay tier of the ChainFresh system

Kapitel 3. The ChainFresh Approach 21

Philipp Stangl Bachelorarbeit

3.3 Decision for the Substrate Framework

ChainFresh is built with substrate[35], a modular framework for building blockchains.
A nontechnical reason for using substrate is its flexibility. Organizations must be able
to adapt their blockchain system to meet supply chain compliance requirements of
regulatory bodies. Regulations happen frequently, especially in food supply chains,
as shown in section 1.1.2. Due to the modular nature of substrate-based blockchains,
developers have the necessary freedom to swap or add modules to their blockchain
runtime.

Technical reasons include the chosen programming language, the software design, and
the off-chain abilities. Substrate is implemented in the programming language Rust,
which aims to provide performance (comparable to C++), reliability, and better means
for productivity. In terms of reliability, Rust manages resources (including memory,
files, network, and thread) and avoids problems such as resource leaks or data races.
Finally, for productivity, Rust provides Integrated Development Environment (IDE)
support and type inspections. Furthermore, substrate is generic by design, meaning
transactions are abstracted to extrinsics (things that happen outside the chain) and
intrinsics (things that happen inside the chain). Transactions are stored as binary large
objects. As a result, users can transfer and store any type of data on the blockchain.

Nonetheless, with ChainFresh as a permissioned blockchain, concerns about off-chain
processes need to be raised. For instance, Helliar et al. have posited that “off-chain
processes may become a major barrier for permissioned blockchains” [18]. Using
substrate, off-chain data can be queried or processed before it is included in the on-
chain state through OCW, a collator node subsystem that allows for the execution
of long-running and possibly nondeterministic tasks. Moreover, an OCW does not
influence the block production time.

3.4 Summary

ChainFresh implements the multi-chain approach for supply chains from section 2.1.2.
The ChainFresh system is split into three tiers: presentation, application, and relay
(refer to appendix A for a combined overview of the three tiers presented in this
chapter). Relay chain validator nodes and parachain collator nodes are architecturally
different and use different modules to fulfill their responsibilities. The collators produce
parablocks and rely on the validators to validate the transactions inside these blocks.

In summary, the architecture of ChainFresh adheres to the following design principles:

1. Consortium: Organizations are allowed to join the network and participate in the
consensus processes of the relay chain.

2. Heterogeneous: The parachains are sovereign over their state transitions. Thus,
organizations are able to extend the runtime of their parachains with their
application-specific logic, encapsulated in FRAME pallets.

Kapitel 3. The ChainFresh Approach 22

Philipp Stangl Bachelorarbeit

3. Interoperability: The parachains use the relay chain consensus and validation for
cross-chain communication and shared security.

4. Controlled transparency: Organizations can store immutable data on their own
parachain. As a result, organizations have full control over exposure of data to,
and acceptance of data from, other parachains.

Kapitel 3. The ChainFresh Approach 23

Philipp Stangl Bachelorarbeit

Chapter 4

Presentation Tier

The presentation tier encompasses the web frontend and a Web3 browser extension.
The web frontend is built with NodeJS and uses the Polkadot JavaScript client library
to interact and query the application tier nodes. The capabilities that the client library
expose are implemented on top of the substrate Remote Procedure Call (RPC) API.
The GUI of the web frontend is the dashboard. Figure 4.1 depicts the main view of the
dashboard and its contents. Located at the top of the dashboard is the navigation menu
with the following menu items. The “Dashboard” item (1) allows a user to return to
the start view. The “Explorer” item (2) redirects a user to the blockchain explorer that
is part of the hosted Polkadot{.js} Apps1 service. Appendix A depicts a screenshot of
the blockchain explorer, which shows the most recent blocks as they become available.
The explorer connects to a local websocket endpoint to retrieve the blockchain data.

4

3

5

1 2

Figure 4.1: The dashboard main view

1https://polkadot.js.org/apps/#/explorer.

24

https://polkadot.js.org/apps/#/explorer

Philipp Stangl Bachelorarbeit

The account selector dropdown (3) allows users to choose an account for performing
actions. User accounts are employed in a variety of contexts in ChainFresh, including
as identifiers and for signing extrinsics. To request a signature from the user or
have the user approve a transaction, one must be able to access the user’s accounts.
User accounts are managed by a Web3 browser extension. It enables performing
operations on a set of keys (e.g., sign, verify) without exposing the secret key to the
outside world. Below the navigation menu is a common area for displaying the view
content. The content area of the dashboard main view provides information about the
blockchain mode, current block, and finalized block of the connected blockchain (4).
The dashboard is divided into different views: organizations, members, documents,
products, shipments, and traces. Each view can be accessed via the view selection (5).

4.1 “Members” View

The “members” view allows an administrator (a user with the Rbac:Manage role)
to create roles, assign or revoke roles, and add administrators to the organization.
To create a role, the “create role” form (1) requires two selections: the pallet and
the permission (execute or manage). Next is (2) assign or revoke role: Assignment
Assign/Revoke. Here, the permission shows the combination Pallet:Permission
of the previously created role Finally, an administrator of an organization can add
another administrator by selecting the other’s account (3). Figure 4.2 shows the
organization administrator, Alice, creating a role for the pallet productRegistry with
execute permission. Alice has manage permissions, to allow her to join the blockchain
consortium and bootstrap the parachain for her organization. Additionally, she assigns
a previously created role Registrar:Execute to Bob, allowing him to submit extrinsics
to the organizations registrar.

2

1 3

Figure 4.2: The members view

Kapitel 4. Presentation Tier 25

Philipp Stangl Bachelorarbeit

4.2 “Organizations” View

The view “organizations” (figure 4.3) provides a user with the ability to register an
organization, or to add a member to a registered organization. Using the text input
field in “create organization” (1), a user can enter the name of the organization to
register in the ChainFresh system. An organization can only be registered once and
by one user. Upon registration, the user is referred to as the organization owner. An
organization owner is the only account that may add members to its organization by
entering the corresponding blockchain address in “add member to organization” (2).
The added user account becomes a delegate of the organization. In figure 4.3, the user
Bob registers an organization named Organic Strawberry Farm. This allows him in the
following sections to register documents, products, and shipments under the name of
the organization.

1 2

Figure 4.3: The organizations view

4.3 “Products” View

The view “products” allows a user to register products in the ChainFresh system.
Located on the left side of the view is an organization selector (1), allowing a user who
is part of multiple organizations to switch between them, and the “register product”
form (2) on the left side of the view has two text input fields. The product identification
number typically is a numeric or alpha-numeric code such as a GS12 Global Trade
Item Number (GTIN) [16]. Custom codes are possible as well as long as they follow a
well-defined data structure, like GTIN. The description text input field is for additional
information about the product content. All registered products, each with its id, owner,
and description, are listed in the “product list” (3) on the right side of the view. A
newly registered product appears in the list as soon as it is included in a parablock.

2GS1 standards enable products and services to be identified by uniquely identifiable barcodes.

Kapitel 4. Presentation Tier 26

Philipp Stangl Bachelorarbeit

2

31

Figure 4.4: The products view

In figure 4.4, user Bob registers a product under the organization Organic Strawberry
Farm. He enters a product identification number in GTIN-8 format and describes the
product content using USDA grades and standards for strawberries [38]. US No. 1
marks them as high-quality strawberries.

4.4 “Shipments” View

To register a shipment, one can use the “register shipment” form (1), which requires
at least three inputs: shipment identification number, receiver, and one product.
Optionally, a second product can be selected.

The shipment identification number, like the product identification number, follows
the GS1 standard for Global Shipment Identification Number (GSIN) [15]. The receiver
is the organization owner account of the organization that receives the shipment.
All registered shipments of the organization, each with its id, owner, receiver, and
associated products, are listed in the “shipments list” (2).

In figure 4.5, Bob is registering the first shipment; thus, a message is displayed instead
of the shipments list. To register the shipment, Bob enters a shipment identification
number in the GSIN standard. Next, he selects the receiver, Charlie. Finally, he
selects the two products from the previous section (4.3) to be included in the shipment.
Because no shipment has been registered yet, Bob sees a clue that indicates the
circumstance instead of seeing a list of shipments.

Kapitel 4. Presentation Tier 27

Philipp Stangl Bachelorarbeit

1

2

Figure 4.5: The shipments view

4.5 “Traces” View

With this view, shipments can be traced along the supply chain. The “shipment”
selector (1) allows one to select a shipment for tracing. Once a shipment is selected,
an additional section appears with shipment details and operations. The shipment
details (2) are split into three columns: events, details, and products. Events reflect
the operations associated with the selected shipment that previously occurred. Details
provide information about the shipment owner and receiver, when the shipment was
registered, and the current status of the selected shipment. The status of a shipment
can be “pending,” “in transit,” or “delivered.” Products, as the name suggests, shows
the products contained in the shipment. The “operations” column (3) allows one to
enter values for latitude, longitude, sensor type, and sensor value and has two buttons.
The input values are intended for a scan operation, which can be recorded with the
“scan” button. A delivery of a shipment can be recorded using the “deliver” button.

Figure 4.6 depicts user Bob tracing a shipment to Charlie’s Organic Supermarket from
the previous section. The shipment details reveal that the shipment is currently in
transit and that is contains the two previously registered products.

Kapitel 4. Presentation Tier 28

Philipp Stangl Bachelorarbeit

2

1

3

Figure 4.6: The traces view with a selected shipment

4.6 “Documents” View

This view allows supply chain participants to share documents with each other. Using
the “register document” form (1), a user can register a document by entering the
document title, drag and drop or click to upload the PDF or image (JPG, PNG) for the
corresponding document, and optionally choose with whom to share the document.
A user can choose to share a document only with their own organization or with
another organization in the system. When a document is registered in the system and
shared with the organization of the current user, it is displayed in the document list
(2). Figure 4.7 illustrates the exchange of documents.

1

2

Figure 4.7: The documents view

Kapitel 4. Presentation Tier 29

Philipp Stangl Bachelorarbeit

Chapter 5

Application Tier

This chapter presents the application tier in detail. First, the collator node architecture
of a parachain is described in section 5.1. The collator node runtime is composed
of five FRAME pallets that define its business logic: RBAC (section 5.2.1), registrar
(section 5.2.2), document registry (section 5.2.3), product registry (section 5.2.4), and
the product-tracking pallet for tracing shipments along the supply chain (section 5.2.5).

5.1 Collator Node Architecture

A collator node is composed of six components: storage, runtime, P2P networking, RPC,
consensus, and telemetry. Figure 5.1 illustrates the architecture of a substrate-based
collator node. Each component is briefly explained in the following.

The blockchain network allows participants to reach trustless consensus about the
state of storage. The storage component is responsible for the evolving state of a
substrate-based blockchain. To achieve this, substrate implements RocksDB [30], a
key-value storage mechanism for fast storage environments.

Runtime defines the state-transition logic. It is compiled to WebAssembly (Wasm) and
made part of the blockchain’s storage state. A node may include a native runtime
compiled for the same platform as the node itself. The executor, responsible for
dispatching calls to the runtime, selects between native code and interpreted Wasm.
While a native runtime can offer performance advantages, the executor will choose to
interpret the Wasm runtime if it implements a newer runtime version.

The P2P networking component provides necessary capabilities, such as P2P routing,
for nodes to communicate with each other. Substrate uses the Rust implementation of
the LibP2P network stack [24].

Substrate provides HTTP and WebSocket RPC servers, encapsulated in the RPC
component. The RPC capabilities allow blockchain users to interact with the node and
the network.

The consensus component contains the logic that allows network participants to agree

30

Philipp Stangl Bachelorarbeit

on the state of the blockchain. Substrate ships with several consensus mechanisms
(e.g., proof of work). One can also supply a custom consensus engine.

The telemetry component exposes client metrics via the embedded Prometheus server
(e.g., LibP2P peers count). Node operators can use the metrics for Prometheus-
/Grafana-based monitoring systems.

P2P
Networking

ChainFresh
Peers

User Interface

Client
Monitoring

Storage

WASM
Runtime

Consensus

Telemetry

RPC

Collator Node

Figure 5.1: Substrate node architecture (adopted from Parity [28])

5.2 Business Logic

The business logic is encapsulated in pallets. The general seven-section structure of a
pallet is as follows:

1. Imports and Dependencies: Imports of modules that the pallet depends on.

2. Pallet Type Declaration: A placeholder to implement Rust traits and methods.

3. Runtime Configuration Trait: All types and constants for the runtime to use.

4. Runtime Storage: Declaration of runtime storage items that are persist between
blocks and can be accessed by the runtime logic.

5. Runtime Events: Definition of the pallet’s events. Events can be emitted to notify
external entities about changes or conditions in the runtime.

6. Hooks: The pallet logic that should be executed regularly in some context (for
instance, on_initialize, which is called before all extrinsics).

7. Extrinsics: Dispatchable functions allow users to interact with the pallet and
invoke state changes from outside the runtime. These functions materialize as
“extrinsics,” which are often compared to transactions.

Kapitel 5. Application Tier 31

Philipp Stangl Bachelorarbeit

Extrinsics do not require transaction fees. Instead, the dispatchable functions are
annotated with transaction weights. A transaction weight is a representation of block
execution time (i.e., weight is another representation of time). In the ChainFresh
implementation, the block execution time is six seconds. Transaction weight is defined
as follows:

1 second = 1012 weight

1000 weight = 10−9 seconds

Substrate makes several mechanisms available to manage access to resources and to
prevent individual components of the chain from consuming too much of any resource.

5.2.1 Role-Based Access Control

To control the access in terms of who can submit extrinsics, ChainFresh implements
RBAC formalized by Ferraiolo, Kuhn, and Chandramouli [11]. RBAC has become the
predominant model for user access control.

The rbac pallet maintains an on-chain registry of roles and the users to which those
roles are assigned. A role is a tuple with the name of a pallet and a permission that
qualifies the level of access granted by the role. A permission is an enum with the
variants Execute and Manage. The Execute permission allows a user to invoke a pallet’s
dispatchable functions. The Manage permission allows a user to assign and revoke
roles for a pallet and also implies the Execute permission. Access control validation is
done within the transaction pool validation by way of the RBAC pallet’s Authorize
signed extension. Therefore, permissions are configured in the chain specification file.

The rbac pallet exposes the following extrinsics:

• createRole(pallet, permission): Create a role for a pallet with permission.

• assignRole(address, role): Assign the role for a given address.

• revokeAccess(address, role): Revoke the role for a given address.

• addSuperAdmin(addressTo): Add an administrator.

5.2.2 Registrar

The registrar inherits Decentralized Identifier (DID) [33] capabilities from the DID
pallet and uses these capabilities to implement an organization registry. This pallet
maintains a list of organizations and maps each organization to a list of members.

Organizations are identified by the account ID that registered it. They are also
associated with a name, which is designated by the value of the Org attribute on the
DID of the organization owner. Organization owners are the only accounts that may
add members to their organizations. When an account is added to an organization

Kapitel 5. Application Tier 32

Philipp Stangl Bachelorarbeit

as a member, the organization owner creates an OrgMember delegate for the member’s
DID. In this way, the organization owner can certify an account’s membership in the
organization. The registrar pallet exposes a custom origin, EnsureOrg, that validates
whether or not an account owns or is a member of at least one organization. The
EnsureOrg origin is used to control access to many of the chain’s capabilities, including
the ability to create roles with the RBAC pallet.

The registrar pallet exposes the following extrinsics:

• createOrganization(orgName): Create an organization.

• addToOrganization(addressTo): Add a member to the organization.

5.2.3 Document Registry

The document registry provides functionality for registering documents. A document
can either be registered under the name of one organization or shared with other
organizations in the supply chain.

The documentRegistry pallet uses proof of existence. Instead of storing the original
document in the blockchain, only a hash value generated by the web frontend, a proof
that the document exists, is stored. This requires (i) a user, (ii) a file hash (or file digest),
and (iii) the timestamp of the verification. Before a document is registered, the digest
is compared to all stored document digests to ensure that the same document can
be registered at most once. The runtime storage is only modified after all checks are
completed. This is important because if the transaction fails at some later point, the
storage is modified and will remain so. The functionality for sharing documents is
explained in section 6.3.

The documentRegistry provides one extrinsic registerDocument with the following
parameters:

• organization: The organization account with which to share the document.

• title: The title of the document.

• digest: The file digest to store on the blockchain.

5.2.4 Product Registry

The product registry provides functionality for registering products (also known as
trade items) exchanged in a supply chain among various stakeholders. A product
owner (i.e., a member of an organization) registers product data in the system to be
visible for other supply chain participants.

The productRegistry maintains a registry of products, which maps each product to the
organization it belongs. The product registry provides one extrinsic registerProduct
with the following parameters:

Kapitel 5. Application Tier 33

Philipp Stangl Bachelorarbeit

• owner: The account that represents the owner of this product, typically the
manufacturer or supplier providing this product within the supply chain.

• props: A series of properties describing the product. Typically, there would at
least be a textual description. It could also contain lot master data (e.g., expiration,
weight, harvest date).

• registered: The timestamp at which the product was registered on the blockchain.

On successful registration, the productRegistry assigns a unique ID to the registered
product for systemwide identification. The origin trait EnsureOrg is used to control
the accounts that are allowed to create products.

5.2.5 Product Tracking

The ProductTracking pallet provides functionality for tracking shipments. One can
monitor the storage and transportation conditions for a shipment along the supply
chain.

Shipments are associated with an organization and have an assigned ID. This pallet
supports tracking several types of shipping events: registration, pickup, scan, and
delivery. With the exception of registration, shipment events may be associated with a
list of sensor readings. The high-level flow is depicted in figure 5.2. The operations
manager registers a shipment, and the ShipmentStatus turns to “pending.” When the
company transport operator tracks the pickup operation, the ShipmentStatus turns
to “in transit.” During the transport, multiple scan operations can occur, but the
ShipmentStatus does not change. Finally, when a shipment arrives at its destination,
the transport operator can track a delivery operation, and the ShipmentStatus turns
to “delivered.”

pickup shipmentShipment status:
Pending

register shipment deliver shipmentShipment status:
InTransit

Shipment status:
Delivered

scan shipment

Figure 5.2: State graph of shipment updates

To construct a trace, productTracking implements the following two builders accord-
ing to the builder pattern [13]: The ShipmentBuilder<AccountId, Moment> builds a
traceable shipment.

fn identified_by(mut self, id:ShipmentId): Requires a reference to a shipment
that is already registered in the system.

fn owned_by(mut self, owner:AccountId): The owner of the shipment.

fn received_by(mut self, owner:AccountId): The receiver of the shipment.

fn with_products(mut self, products:Vec<ProductId>): A series of products that
are uniquely identified by their ProductId associated with the shipment.

Kapitel 5. Application Tier 34

Philipp Stangl Bachelorarbeit

fn registered_at(mut self, registered:Moment): The moment at which the ship-
ment was registered on-chain.

Next, the ShippingEventBuilder<Moment>

fn at_location(mut self, location:Option<ReadPoint>): Location is an optional
ReadPoint that contains the geographic position (latitude and longitude) where
the event was captured.

fn at_time(mut self, timestamp:Moment): Timestamp as time (represented as UNIX
time) at which the event was captured by an external system or sensor.

fn for_shipment(mut self, id:ShipmentId): Assignment of the shipping event to
a tracked shipment based on the ShipmentId.

fn of_type(mut self, event_typ:ShippingEventType): The business operation that
occurred during the shipping process: pickup, scan, or deliver.

fn with_readings(mut self, readings:Vec<Reading<Moment>>): Readings are an
optional series of Reading that represent data captured by various sensors (humid-
ity, temperature, vibration, etc). A Reading includes a device_id (unique identi-
fier of the device), a reading_type (type of sensor/measurement), a timestamp
(time at which the reading was recorded), and a value as the actual measurement
recorded by the sensor.

To communicate with the outside world about the product tracking and conditions, the
collator node architecture is extended with an OCW subsystem depicted in figure 5.3.
Shipment events are placed in a queue that is monitored by an OCW. When events
appear in this queue, the OCW sends them to an off-chain service via a REST API.

RPC

Core Infrastructure
(Storage, Networking, Consensus)

Substrate
Runtime

Off-Chain WorkerSigned or
Unsigned
Extrinsics

Collator Node

Long Running
Task

External Service
Call (HTTP)

Encryption/
Decryption

Figure 5.3: Collator node architecture with the OCW subsystem (adopted from Parity [28]).
Core subsystems in gray, OCW subsystem in orange.

Kapitel 5. Application Tier 35

Philipp Stangl Bachelorarbeit

5.3 Cumulus

Parachains require a set of functionalities to send and receive messages and enable
validators to validate their state transition for shared security. The Cumulus1 subsystem
provides interfaces and extensions to convert a substrate FRAME runtime into a
parachain runtime. When compiling a parachain runtime, a Wasm binary with the
parachain runtime code and the validate_block functionality is generated. This
binary is required by the relay chain to register a parachain. The parachain consensus
will follow the relay chain to get notified about which parablocks are included in the
relay chain and which are finalized.

5.4 Summary

In summary, the application tier encompasses application-specific blockchains (the
parachains) that allow organizations to join with their own blockchain, where they
can store immutable data. Through this, organizations are able to create products and
shipments. A shipment’s storage and transportation conditions can be monitored and
tracked through the supply chain. Additionally, an OCW is used to communicate the
latest shipment status with the external world. With Cumulus, parachains are able
to send and receive cross-chain messages and enable validators to validate their state
transitions.

1A cumulus is a dense, white, fluffy, flat-based cloud with a multiple rounded top and a well-defined
outline. together they form a system that is intricate, beautiful and functional. The name was chosen
because of the dot like shape (Polka-dot)

Kapitel 5. Application Tier 36

Philipp Stangl Bachelorarbeit

Chapter 6

Relay Tier

The relay tier is where the cross-chain messages are relayed from a source parachain to
a target parachain. ChainFresh leverages the relay chain implementation of Polkadot,
introduced in chapter 2.3.2 on page 13. First, section 6.1 briefly outlines the parachain
registration. Next, section 6.2 continues the path from parablock creation to inclusion
in the relay chain. The final section 6.3, describes cross-chain communication with one
illustrative example for the cross-chain transfer of document existence proofs.

6.1 Parachain Registration

Before parachains can benefit from shared security and cross-chain communication,
they need to be registered on the relay chain. The following rule is defined in the
Collator Protocol [40], which implements the network protocol for the Collator-to-
Validator networking: To accept n parachain connections, n + 1 validator nodes need
to run on the relay chain. For the ChainFresh prototype, two relay chain nodes are
started to connect one parachain node. Further, the relay chain needs to obtain the
hex-encoded parachain’s genesis state (exported from a collator node) and the Wasm
runtime validation function to validate parablocks.

6.2 Parachain Block Inclusion

Chapter 3 describes the block production process in a parachain. This section continues
the path from creation to the inclusion of a parablock into the relay chain. Appendix A
depicts the six-step inclusion process described in the following.

1) The collator passes the collation to one of the relay chain validators. The validator
must belong to the group of validators from the previous section (6.1) that were initally
provided by the same parachain as the collator. A collation contains a candidate and
a Proof of validation (PoV). The validator then passes the collation to the rest of the
validators, provided by the same parchain, through the collator protocol.

37

Philipp Stangl Bachelorarbeit

2) The validators in the group verify and agree on candidates through candidate
backing. Verification and consensus are a one-to-one correspondence. Only after the
verification is successful, vote +1 (so after most of the validators vote) is it called
consensus. Candidates that have collected enough signed and valid votes from other
validators are considered “backable.”

3) The block producer of the relay chain records both the backable candidate and
the backing of the candidate in the block of the relay chain. A backable candidate is
included in the block of the relay chain and is considered to be backed in the branch
of the relay chain. (Each parachain will have at most one backable candidate, and the
corresponding backing will be included in the block of the relay chain. At this time,
the relay chain has not been confirmed.)

4) Once the candiatate is backed in the relay chain, the candidate is “pending available.”
It will not be considered as part of the parachain until it is proven to be available.

5) In the subsequent relay chain block, validators will make the candidate available
through the availability distribution subsystem, and the information available about the
candidate will be recorded in the subsequent relay chain block (more than two-thirds
of all validators are held PoV of candidate).

6) Once the state machine of the relay chain (the validator’s block producer) has
enough information to believe that the candidate’s PoV is available, then the candidate
will be considered part of the parachain and can become a complete parachain block
(step 7; only by including the information in the relay chain can there be complete
data in step 8. The block producer of the relay chain packs the available candidates
on the chain and then updates the head of the parachain and processes the messages
contained in the candidate.)

6.3 Cross-Chain Asset Transfers

Parachains, and interoperability between them, is highly facilitated by ordered and
timely delivery of messages. HRMP is the underlying protocol that ChainFresh
parachains use to send messages to each other (i.e., facilitate cross-chain asset transfers).
This section illustrates the process of transferring a document’s existence proof from
the source parachain of Organization A (OrgA) to the target parachain of organization
B (OrgB).

6.3.1 Opening a Messaging Channel

OrgA can initiate a messaging channel to OrgB, depicted in figure 6.1. Therefore,
OrgA must send an upward Router::init_open_channel message to the relay chain
that includes the target parachain ID and the conditions for closing that channel (e.g.,
timeout).

This upward message will add an entry to OrgA’s CST on the relay chain. In this table,
every entry has information such as the recipient parachain ID, configurations such as

Kapitel 6. Relay Tier 38

Philipp Stangl Bachelorarbeit

the size or number of messages allowed on this channel, and the status of the channel,
which can be on of “open,” “pending open,” “pending closing,” or “closing.” Here,
the channel will be set to “pending open.” Then, the relay chain sends a downward
message to OrgB that includes the metadata (parachain ID of initiator, the sizes and
number of messages) of the channel.

If OrgB is willing to have a channel open with the initiator parachain OrgB, it must send
an upward Router::accept_open_channel message to the relay chain. This upward
message includes the metadata it was sent earlier. Once the relay chain receives the
message, it must match the metadata sent by OrgB’s message and OrgA’s CST entry
that was created earlier for this purpose. If it does, the status in OrgA’s CST entry
corresponding to this channel is set to “open.” If OrgB does not respond to the relay
chain message, OrgA can cancel the channel initiation at any moment. However, some
time must pass between initiation and cancellation to avoid race conditions.

Router::accept_open_channel
(para_b_id, para_a_id)

HrmpChannelAccepted

HrmpNewChannelOpenRequest

Router::init_open_channel
(para_b_id, cap, max)

Organization A
Parachain Relay Chain Organization B

Parachain

Figure 6.1: HRMP opening sequence

6.3.2 Executing a Cross-Chain Transfer

The cross-chain transfer sequence starts when a messaging channel is established.
OrgA can initiate a cross-chain transfer by putting a message with the file digest and
owner into the messaging channel and calling Router::queue_outbound_hrmp. This
will transfers OrgA’s message outbound queue data to OrgB’s message inbound queue.
OrgB calls Router::prune_hrmp on its message entry queue and returns message data
with a watermark (a relay chain block number indicating that incoming messages
before the current block have been processed).

6.3.3 Closing a Messaging Channel

The closing sequence (shown in figure 6.2) begins when OrgA sends an upward
message request to the relay chain for closure via InitCloseChannel. After this

Kapitel 6. Relay Tier 39

Philipp Stangl Bachelorarbeit

point, no new HRMP messages of OrgA’s parachain are accepted for that channel.
Then Router::close_channel is called, and the relay chain status of the channel
becomes “pending closing.” Afterward, the relay chain sends a downward message
HrmpChannelClosing to OrgB to signal closing the messaging channel. OrgB can then
end the channel with some AcceptCloseChannel message. Finally, the message queues
are cleared, the channel is closed, and the metadata of the messaging channel is
deleted.

AcceptCloseChannel
HrmpChannelClosed

HrmpChannelClosing

InitCloseChannel

Organization A
Parachain Relay Chain

Router::close_channel()

Organization B
Parachain

Figure 6.2: HRMP closing sequence

6.4 Summary

This chapter explained the relay tier in greater detail. Before a parachain can benefit
from shared security and cross-chain communication, it must be registered at the
relay chain. For shared security, the parachains make use of the relay chain block
finalization consensus. Each candidate is first checked by the parachain validators,
then by a randomly selected BABE relay chain validator, and finalized by the secondary
checkers. For cross-chain messaging, a messaging channel must be established. When
this happens, the messages (data) can be passed up from a source parachain to the
relay chain. Subsequently, the relay chain passes the messages down to the target
parachain. When all messages are processed and the messaging channel is no longer
required, it is closed by the source parachain.

Kapitel 6. Relay Tier 40

Philipp Stangl Bachelorarbeit

Part III

Conclusions

41

Philipp Stangl Bachelorarbeit

Chapter 7

Evaluation

This chapter provides a technical evaluation of the implemented ChainFresh system.
The first section (7.1) evaluates cross-chain messaging. The second section (7.2) outlines
the hard disk footprint of the system artifacts and accounts for the library dependencies
of the web frontend. The final section (7.3) discusses current system limitations of the
ChainFresh implementation.

7.1 Cross-Chain Messaging

To date, it seems that little or no effort has been put forward to evaluate a multi-
chain and cross-chain communication, based on a literature review of the state of
the art in blockchain evaluation [32, 10]. In the context of the ChainFresh system,
this circumstance led to the formulation of RQ2: How can cross-chain transfers of a
heterogeneous multichain be evaluated? This question is answered in the following
sections: the basic idea of the evaluation approach is introduced in section 7.1.1, and
the adopted equations from the field of fluid dynamics are outlined in section 7.1.2
and discretized to fit on-chain data in section 7.1.3. Finally, the numerical results are
visualized in section 7.1.5.

7.1.1 Evaluation Approach

The evaluation of cross-chain messages suggests that the focus should be rather on
finding macroscopic variables to capture the full system rather than microscopic
variables concerning a single parachain. By adapting the perspective of fluid dynamics,
observing a network of blockchains from a monitor, one can see the movement of
cross-chain transfers as fluid.

Due to the heterogeneity of the data that can be moved between parachains, there
is a need for a uniform measure unit. Typically, cross-chain messaging involves the
transfer of tokens or arbitrary data. In major blockchain networks (e.g., Ethereum),

42

Philipp Stangl Bachelorarbeit

Planck length1 is chosen as a uniform unit of measure. A message is assigned one
unit of transfer unit, if it is not a token transfer. Otherwise, the amount of transfer
units equals the amount of tokens transferred in the message. The transfer volume
(short: volume) of a parachain p is the total amount of units transferred in a given time
interval. As stated in the previous chapter (6), a parachain can be uniquely identified
in the network by its parachain ID.

There are two ways to describe the resulting fluid flow in physics: the Lagrangian
specification and the Eulerian specification. In the Lagrangian specification, each fluid
particle is tracked while it is moving in time and space, while the Eulerian specification
focuses on a specific subspace and observes aggregate particles of fluid as they flow
through subspace as time moves forward. For this approach, the Eulerian specification
is chosen because parachains of similar transfer volume are aggregated into a subspace.
This allows for capturing transfer volume irregularities in subspaces and over time.

7.1.2 Adapted Fluid Dynamics Equations

The equations introduced in this section are defined for the continuous domain.

Density

The first variable is the Density ρ. For example, in traffic flow models, ρ(x, t) is the
density of cars on a highway. That is the number of cars per kilometer at milepost x at
time t [37]. Here, ρ(x, t) is the number of parachains P per transfer volume at time t.
Let x ∈ R+ represent the transfer volume of parachains, and let ρ(x, t) be the density
of parachains at transfer volume x and time t. Let N(x, t) denote the total number
of parachains in volume section [x0, x1] (with x0 ≤ x ≤ x1) at time t. The following
definition for density is obtained:

N(x, t) =
∫ x1

x0

ρ(x, t)dx (7.1)

Velocity

The Velocity up(t) of parachain p at time t is a measure of how quickly units are
circulating in and out of a parachain. It is defined as:

up(t) = lim
∆t→0

vp(t)− vp(t− ∆t)
∆t

(7.2)

where vp(t) is the transfer volume of parachain p at time t. The average velocity of
parachain in volume section [x0, x1] at time t is denoted by v(x, t), which is constant for

1Planck length is a unit of length and the smallest possible distance in the physical universe. It was
originally proposed by Max Planck, a German theoretical physicist (* April 23, 1858; † October 4, 1947).

Kapitel 7. Evaluation 43

Philipp Stangl Bachelorarbeit

each x ∈ [x0, x1] and is defined as the average change in volume across all parachains
in that volume section at time t. The average velocity function is given by

ū(x, t) =
1

N(x, t)

N(x,t)

∑
k=1

uk(t) (7.3)

Rate of Flow

Assuming that parachains are neither added nor removed from the network, the
number of parachains can change only as a result of flow across the endpoints x0, x1.
The rate of flow (called the Flux) of parachains is given by

Q(x, t) = ρ(x, t)v(x, t) (7.4)

7.1.3 Discretization

Adapting the perspective of fluid dynamics is only the first step toward a quantitative
evaluation approach for cross-chain messaging. The equations in section 7.1.2 are
defined for the continuous domain and require modification to apply to discrete
blockchain data. We discretize these equations as follows. Consider a set of parachains
K, each of which has a transfer volume measured at regular times, each ∆t apart. For
a set of T intervals, the time intervals are indexed by t ∈ 0, 1, ..., T. Figure 7.1 depicts
how the domain of volume x and time t is discretized into regions [x0, x1]× [t0, t1],
where [x0, x1] is a volume range and [t0, t1] is a time interval.

t0 t1

x0

x1

Time

Tr
an

sf
er

Vo
lu

m
e

∆x

∆t

Figure 7.1: Volume–time discretization

The transfer volume domain is partitioned into sections. In this analysis, a volume
discretization of ∆x = 10 is applied. The value for ∆x was chosen empirically. The
transfer volume section denoted by Sx, x ∈ Z+ contains parachains in the interval
[xi, xi+1]. The discrete approximation of N is:

N(x, t) = |{k ∈ K | vk(t) ∈ Sx}| (7.5)

Kapitel 7. Evaluation 44

Philipp Stangl Bachelorarbeit

The density can be approximated by ratio between the number of parachains in a
volume section and the section area.

ρ(x, t) =
N(x, t)
∆x∆t

. (7.6)

The velocity of a parachain can be approximated by the first derivative of its transfer
volume with respect to time:

uk(t) =
vk(t)− vk(t− ∆t)

∆t
k ∈ K (7.7)

Thus, the average velocity of parachains in a transfer volume section ū(x, t) can be
approximated by the sum of velocities over the total sum of parachains in this section.

ū(x, t) =
1

N(x, t) ∑
pk(t)∈Sx

uk(t) x ∈ Z+ (7.8)

7.1.4 Evaluation Workflow

To apply the evaluation approach, block resolution on-chain data is collected from a
full node. A full node is a relay chain validator node. The block resolution refers to the
block production time of six seconds, described in chapter 5. The evaluation workflow,
depicted in figure 7.2, is divided into the following six steps:

1) Initalization: The workflow requires a connection to the running ChainFresh system,
which it can monitor for new block headers. Thus, the first step of the workflow
establishes a websocket connection to a full node.
2) Monitoring: In this step, the running system is observed on new block headers.
When a new block header becomes available, the subscription_handler hands over
the parent hash of the new block header for the following pre-processing steps.

The data pre-processing workflow, in steps 3 and 4, is adopted from Framewala et al.
[12] and modified for real-time analysis (monitoring).

3) Extrinsics Deserialization: With the parent hash, the extrinsics contained in a block
can be fetched and deserialized.
4) Unit Conversion: Extrinsics can contain information about transfer amounts (e.g.,
balance transfers) or not in the case of document transfers. Therefore, each extrinsic
gets transfer units assigned in Planck length (10−8).

5) On-Chain Data Serialization: After fetching the latest blockchain data, it must be
parsed to convert it to a processable format in a structured form. The parser is used to
make transactions from all the blocks available in a readable format. The processed
on-chain data is stored in a structured format having fields such as timestamp, source
parachain, target parachain, and transfer value. 6) Visualization: Finally, the equations
from the previous section (7.1.3) and section 7.1.2 respectively are applied to the
collected on-chain data. The resulting graph plots are generated with Matplotlib. The
results are discussed in the next section 7.1.5.

Kapitel 7. Evaluation 45

Philipp Stangl Bachelorarbeit

Initalization
2

Monitoring
1

Pre-Processing

Extrinsics
Deserialization Unit Conversion

On-Chain Data
Serialization

Visualization

4

3 5

File

Execution Step

Legend

Figure 7.2: Test workflow

7.1.5 Numerical Results

The cross-chain messages in this setup were partly manually generated via the GUI
and automatically using an XCM generator. The XCM generator is not part of the
evaluation workflow as it is only used to simulate realistic transfer load.

Three plots of the variable velocity for different transfer volume ranges are shown
in figure 7.3. This figure reflects considerable variability and sensitivity around the
minutes 180 to 200, as the velocity (blue) deviates from the mean velocity (red). Notably,
spikes in velocity were only measured in the low transfer volume range (< 10 units)
and the medium transfer volume range (10 to 100 units). Once unusual variability
in transfer volume is detected, one can explore the involved parachains and possible
causes.

It must be expected that the same results cannot be achieved as easily with the same
workflow when XCMP is available. Using XCMP, the payload will not be stored on
the relay chain anymore. Instead, one must connect to at least one collator node of
each parachain to access the payload of a cross-chain message.

0 50 100 150 200 250
Time (minutes)

150

100

50

0

50

100

Ve
lo

cit
y

(u
ni

ts
/m

in
ut

e)

Parachains with transfer volume < 10 units
Velocity
Average Velocity

0 50 100 150 200 250
Time (minutes)

100

50

0

50

100

150

200

Parachains with transfer volume 10 to 100 units

0 50 100 150 200 250
Time (minutes)

300

200

100

0

100

200

300

400
Parachains with transfer volume > 100 units

Figure 7.3: Transfer volume velocities

Kapitel 7. Evaluation 46

Philipp Stangl Bachelorarbeit

7.2 Hard Disk Footprint

The four artifacts of ChainFresh are the polkadot executable for the relay tier, the
parachain executable and the ocw script for the application tier, and a build folder for
the presentation tier. All four artifacts, each with its build tool and artifact size, are
listed in table 7.1.

System name Build tool Artifact name Artifact size
Frontend Yarn build 19.1 MB
Off-Chain Service Python Interpreter ocw.py 414 B
Parachain Rust Compiler parachain.exec 43.6 MB
Relaychain Rust Compiler polkadot.exec 162.5 MB

Table 7.1: ChainFresh artifacts

To generate the web frontend build folder with static files for production, Yarn [44]
bundles several external libraries along the frontend files. The primary external
library is react for building the browser-based ChainFresh user interface. The
react-dom, react-router-dom, and react-scripts dependencies are part of React.
The carbon-components library is the official implementation of the Carbon Design
System.2 Carbon components are a collection of reusable HTML and SCSS partials
to ease the development of the browser-based user interfaces. The sass library is
used for the SCSS partials of the carbon components. The xxhashjs library is for
cryptographic hashing purposes. The web frontend uses it for client-side hashing of
the files to be used by the document registry in the application tier. The substrate-lib
submodule makes use of the prop-types library to ensure the right properties are
passed to the transaction button and the query-string library to parse the connected
websocket string. The @polkadot package includes extension-dapp to retrieve all the
Web3-injected providers added to the web page; types provides helper methods to
convert a type returned by the API from or to Codec; ui-keyring to manage the state of
a connected blockchain account in storage; ui-settings to manage the API endpoints
for the selected blockchain; util and util-crypto to provide utility functions with
additional safety checks for consistent coding; and api to provide a wrapper around
all the methods exposed by a Substrate client in the application tier. All frontend
dependencies, each with its version and file size, are listed in table 7.2.

2Carbon Design System implements the IBM Design Language. The designs are systemic and logical
as they all follow the same universal principles. Initial public development started on June 10, 2015.

Kapitel 7. Evaluation 47

Philipp Stangl Bachelorarbeit

Dependency Version File size
@carbon/colors 10.34.0 160 kB
carbon-components 10.25.0 8.5 MB
carbon-components-react 7.25.0 6.7 MB
carbon-icons 7.0.7 902 kB
@carbon/icons-react 10.42.0 55 MB
@polkadot/api 1.34.1 570 kB
@polkadot/extension-dapp 0.34.1 26 kB
@polkadot/types 1.34.1 1.1 MB
@polkadot/ui-keyring 0.58.1 89 kB
@polkadot/ui-settings 0.58.1 36 kB
@polkadot/util 3.4.1 416 kB
@polkadot/util-crypto 3.4.1 529 kB
prop-types 15.7.2 104 kB
query-string 6.13.2 32 kB
react 16.13.1 204 kB
react-dom 16.13.1 3 MB
react-router-dom 5.2.0 723 kB
react-scripts 3.4.3 11.9 MB
sass 1.29.0 4.3 MB
xxhashjs 0.2.2 182 kB

Table 7.2: Frontend dependencies table

7.3 System Limitations

The implementation of ChainFresh is a proof of concept and has several limitations.
The project uses Cargo [8] to download and compile the Rust package’s dependencies
for the relay chain and the parachains. The build time for polkadot took 1705.39
seconds in one build. The build time for the parachains took 940.11 seconds on
average in eight builds. For the web frontend, Yarn generated a production build
folder in 68.07 seconds on average across seven builds. The total average system build
time is 2713 seconds. The measurements were obtained with a 6-Core Intel Core i7, 32
GB RAM local machine during system implementation. Due to the limited number of
builds on one local machine, the results must to be interpreted with caution. Different
hardware will likely yield different system build times.

One possible way to accelerate the build time, if no superior hardware configuration
is available locally, is to use Cargo Remote [20]. In the context of this thesis, a virtual
machine was set up on Amazon Web Services with 16 virtual CPUs and 64 GB memory.
The build time for polkadot took 510.09 seconds in one build, similar to the results of
Kopp [20]. The build time for a parachain took 182.13 seconds.

Currently, ChainFresh is leveraging the Polkadot relay chain implementation with
HRMP for cross-chain messaging. Consequently, the relay chain contains configura-
tions and packages not used by ChainFresh, resulting in slower build times. Further-

Kapitel 7. Evaluation 48

Philipp Stangl Bachelorarbeit

more, with HRMP, the full payload of a message is stored in the relay chain. While this
allows for the evaluation approach in section 7.1, it constrains the benefit of controlled
transparency in section 3.1.

Room for improvement involves the organization selector (section 4.3). Conceptually,
the organization selector accounts for the fact that an organization could be divided
into multiple divisions. Thus, an account could be part of multiple divisions or roles
in the same organizations. The registrar pallet maintains a list of organizations and
maps each organization to a member in a one-to-one relationship. Organizations are
identified by the account ID that registered it. This limits an account to register at most
one organization. Simultaneously, one organizations cannot be mapped to multiple
accounts.

7.4 Summary

This chapter provided a technical evaluation of the ChainFresh system. Initially, the
concepts of density, velocity, and flux were adapted from the field of fluid dynamics and
introduced to capture the variability of the transfer volume in cross-chain messaging.
The characteristics of the evaluation approach define it as performance monitoring.
Next, the executable artifacts have been described with their hard disk footprint.
The included external library dependencies for the build folder of the web frontend
have also been accounted for. Finally, current system limitations of the ChainFresh
implementation were discussed.

Kapitel 7. Evaluation 49

Philipp Stangl Bachelorarbeit

Chapter 8

Future Work

ChainFresh was designed with extensibility and modularity in mind. Several ideas for
extensions and modifications of the current ChainFresh system are presented here.

Section 2.3.1 introduced the network of heterogeneous state machines approach, along
with the unified state machine with heterogeneous shards approach implemented in
this thesis. Both approaches belong to the BIF category BoB. Future work may conduct
a comparative analysis between the two approaches. Methods to achieve this include
the substitution of the XCMP protocol with the IBC protocol. A runtime pallet called
pallet-ibc (version 2.0.0-pre.2) [36], which implements the standard IBC protocol for
substrate-based blockchains, is currently under development. This pallet would replace
the cumulus pallet in the application tier, effectively converting parachains into zones.
In the relay tier, the relay chain would be replaced by one or more hubs. Still, the
terminology stays the same. Parachains and zones both implement application-specific
logic. The relay chain and hubs are both relayers, outlined in the state-of-art section
(2.3.1). Therefore, the three-tier system architecture as a whole remains unaffected by
such change.

A way to extend the current ChainFresh system is to introduce further functionalities
for products, shipments, and documents. For instance, if a user wants to update an
existing document, a new dispatchable function, update_document, must be introduced
in the DocumentRegistry pallet. The document can then be updated by calling the new
dispatchable function with parameters title of type <Vec<DocumentTitle>> to change
the existing document tile and organization of type DocumentOrganization to share
the document with more organizations than the one initially selected. Analogously, all
other pallets can be extended with additional functionality.

50

Philipp Stangl Bachelorarbeit

Chapter 9

Conclusion

Developing long-term and increasingly collaborative relationships among supply
chain participants requires advanced technological solutions to retain a competitive
edge. Blockchain is presented as a promising technology that might increase supply
chain visibility and improve efficiency. This thesis offers an answer for both research
questions stated at the beginning.

RQ1: How can a blockchain-enabled supply chain network be designed with in-
teroperability and controlled transparency? This question is answered with a
reference implementation named ChainFresh, which implements the multi-chain
approach for blockchain-enabled supply chains. The ChainFresh system architecture
is composed of three tiers: presentation, application, and relay. The Presentation tier
provides the user with convenient client-side access to the system. The application
tier encompasses each organization’s parachain, which is responsible for realizing
the core business logic of ChainFresh. In turn, this allows for controlled transparency
on a blockchain level as each organization has control over the data it shares. Finally,
interoperability is realized by the relay tier through leveraging the Polkadot relay
chain implementation and XCMP for cross-chain communication.

RQ2: How can cross-chain message passing be quantitatively evaluated in a het-
erogeneous multi-chain? The concepts of density, velocity, and flux were adapted
from the field of fluid dynamics (Eulerian specification) and introduced to capture
the variability of the transfer volume in cross-chain messaging.

The work primarily followed the methodology of the design science approach by
Hevner [19] to produce the ChainFresh system artifacts. proves the feasibility of the
ChainFresh concept. The ChainFresh code is available in the Cyberlytics repository:
https://github.com/cyberlytics/ChainFresh.

Finally, the design approach of ChainFresh can benefit more than just the supply chain
industry. In essence, it can apply to any network that requires the transfer of sensitive
data. However, blockchain technology is still at its infancy stage, and there is still a long
way before it can be widely put into use. For this to occur, supply chain organizations
must not only adopt the new technology but also use it as an information-sharing
medium.

51

https://github.com/cyberlytics/ChainFresh

Philipp Stangl Bachelorarbeit

Appendices

52

Philipp Stangl Bachelorarbeit

Appendix A

ChainFresh System

Figure A.1: Polkadot{.js} UI Blockchain explorer. On the left hand side, recent blocks with
their author are listed. On the right hand side, recent events inside recent
blocks are listed.

53

Philipp Stangl Bachelorarbeit

Le
ge

nd Pa
ra

ch
ai

n
Bl

oc
k

R
el

ay
 C

ha
in

 B
lo

ck

C
ro

ss
-C

ha
in

 M
es

sa
ge

R
PC

 (W
eb

so
ck

et
)

R
ES

T
AP

I (
H

TT
P)

C
ur

re
nt

Pa

ra
ch

ai
n

Bl
oc

k

M
es

sa
gi

ng

se
nd

 a
nd

 fe
tc

h
da

ta

O
ff-

C
ha

in
 S

er
vi

ce

ex
ec

ut
e

ha
nd

le
 o

ff-
ch

ai
n

co

m
pu

ta
tio

n

B
us

in
es

s
Lo

gi
c

su
bm

it
O

C
W

ex

tri
ns

ic

Tr
an

sa
ct

io
n

Po
ol

O
ff-

C
ha

in
 W

or
ke

r

su
bm

it
XC

M

ex
tri

ns
ic

ha
nd

le
 X

C
M

C
um

ul
us

A
P
P
LI

C
AT

IO
N

 T
IE

R

C
ur

re
nt

Pa
ra

ch
ai

n
Bl

oc
k

G
en

es
is

Pa

ra
ch

ai
n

Bl
oc

k

se
nd

 a
nd

 fe
tc

h
da

ta

C
ol

la
to

r

pr
od

uc
e

bl
oc

k

C
ol

la
to

r-
V
al

id
at

or

co
m

m
un

ic
at

io
n

ex
ec

ut
e

ha
nd

le
 o

ff-
ch

ai
n

co

m
pu

ta
tio

n

B
us

in
es

s
Lo

gi
c

su
bm

it
O

C
W

ex

tri
ns

ic

Tr
an

sa
ct

io
n

Po
ol

O
ff-

C
ha

in
 W

or
ke

r

su
bm

it
XC

M

ex
tri

ns
ic

ha
nd

le
 X

C
M

C
um

ul
us

C
ol

la
to

r

pr
od

uc
e

bl
oc

k

KEY MGMT

W
eb

3
Ex

te
ns

io
n

(A
cc

ou
nt

, P
riv

at
e

K
ey

)

su
bm

it
ex

tr
in

sic

sig
n

ex
tr

in
sic

 w
ith

pr

iv
at

e
ke

y

W
eb

 F
ro

nt
en

d

KEY MGMT

W
eb

3
Ex

te
ns

io
n

(A
cc

ou
nt

, P
riv

at
e

K
ey

)

su
bm

it
ex

tr
in

sic

sig
n

ex
tr

in
sic

 w
ith

pr

iv
at

e
ke

y

W
eb

 F
ro

nt
en

d

P
R
ES

EN
TA

T
IO

N
 T

IE
R

R
EL

AY
 T

IE
R

Sc
he
du

le
r

V
al

id
at

or
 N

od
e

X
C
M
P

In
cl
us
io
n

Pa
ra
s

Sh
ar
ed

va
lid

at
e

pa
ra

ch
ai

n
bl

oc
k

an
d

pr
od

uc
e

re
la

y
ch

ai
n

bl
oc

k

C
ol

la
to

r-
V
al

id
at

or

co
m

m
un

ic
at

io
n

V
al
id
ity

C
ro

ss
-C

ha
in

 M
es

sa
gi

ng
 C

ha
nn

el

G
en

es
is

R
el

ay
 C

ha
in

B

lo
ck

C
ur

re
nt

R
el

ay
 C

ha
in

B

lo
ck

O
rg

an
iz

at
io

n
A

V
al

id
at

or
s

O
rg

an
iz

at
io

n
B

V
al

id
at

or
s

O
rg

an
iz

at
io

n
A

O
rg

an
iz

at
io

n
B

R
el

ay
 C

ha
in

 M
es

sa
gi

ng
R

el
ay

 C
ha

in
 M

es
sa

gi
ng

C
ro

ss
-C

ha
in

 M
es

sa
gi

ng

Bl
oc

kc
ha

in

G
en

es
is

Pa

ra
ch

ai
n

Bl
oc

k

Fu
nc

tio
n

C
al

l

C
on

se
ns

us

Fi
gu

re
A

.2
:H

ol
is

ti
c

C
ha

in
Fr

es
h

sy
st

em
de

si
gn

ov
er

vi
ew

fo
r

tw
o

in
te

ro
pe

ra
ti

ng
or

ga
ni

za
ti

on
s.

Kapitel A. ChainFresh System 54

Philipp Stangl Bachelorarbeit

Collator

Candidate

Backable

 Relaychain Validator
(selected by BABE)

Relay Chain Block
(Pending Availability)

Parablock

Finalized Relay Chain Block

Validator 3

Validator 1Validator 2

1

2

4

7

9

Se
co

nd
ar

y
C
he

ck
er

s

(R
el

ay
 c

ha
in

 v
al

id
at

or
s

su
bs

et
)

P
rim

ar
y

C
he

ck
er

s

(P
ar

ac
ha

in
 v

al
id

at
or

s
su

bs
et

)

6

3

Validator 4

8

5

Figure A.3: Block inclusion process

Kapitel A. ChainFresh System 55

Philipp Stangl Bachelorarbeit

Bibliography

[1] Handan Kilinc Alper. Blind Assignment for Blockchain Extension Protocol, [Online].
2021. url: https://research.web3.foundation/en/latest/polkadot/block-
production/Babe.html.

[2] Andreas M. Antonopoulos and Gavin Wood. Mastering ethereum: building smart
contracts and dapps. O’reilly Media, 2018.

[3] APQC. Blockchain adoption in supply chain: Current state for 2020. [Online]. 2020.
url: https://www.apqc.org/system/files/resource-file/2020-05/K010594_
SCM%20BlockChain%20IG_QuickPoll13.pdf.

[4] Rafael Belchior et al. “A Survey on Blockchain Interoperability: Past, Present,
and Future Trends”. In: ACM Computing Surveys (CSUR) 54.8 (2021), pp. 1–41.

[5] Michael A. Bourlakis and Paul W. H. Weightman. Food supply chain management.
John Wiley & Sons, 2008.

[6] Mic Bowman et al. “Private Data Objects: an Overview”. In: ArXiv abs/1807.05686
(2018).

[7] Jeff Burdges et al. “Overview of polkadot and its design considerations”. In:
ArXiv abs/2005.13456 (2020).

[8] Cargo. [Online]. 2021. url: https://doc.rust-lang.org/cargo/.

[9] Niklas Egels-Zandén, Kajsa Hulthén, and Gabriella Wulff. “Trade-offs in supply
chain transparency: the case of Nudie Jeans Co”. In: Journal of Cleaner Production
107 (2015), pp. 95–104.

[10] Caixiang Fan et al. “Performance evaluation of blockchain systems: A systematic
survey”. In: IEEE Access 8 (2020), pp. 126927–126950.

[11] David Ferraiolo, D. Richard Kuhn, and Ramaswamy Chandramouli. Role-based
access control. Artech house, 2003.

56

https://research.web3.foundation/en/latest/polkadot/block-production/Babe.html
https://research.web3.foundation/en/latest/polkadot/block-production/Babe.html
https://www.apqc.org/system/files/resource-file/2020-05/K010594_SCM%20BlockChain%20IG_QuickPoll13.pdf
https://www.apqc.org/system/files/resource-file/2020-05/K010594_SCM%20BlockChain%20IG_QuickPoll13.pdf
https://doc.rust-lang.org/cargo/

Philipp Stangl Bachelorarbeit

[12] Aman Framewala et al. “Blockchain Analysis Tool For Monitoring Coin Flow”.
In: 2020 Seventh International Conference on Software Defined Systems (SDS). IEEE.
2020, pp. 196–201.

[13] Erich Gamma et al. Design patterns: Elements of reusable software architecture. 1995.

[14] Christopher Goes. “The Interblockchain Communication Protocol: An Overview”.
In: ArXiv abs/2006.15918 (2020).

[15] GS1. GS1 GSIN. [Online]. 2015. url: https://www.gs1.org/docs/idkeys/GS1_
GSIN_Executive_Summary.pdf.

[16] GS1. GS1 GTIN. [Online]. 2015. url: https://www.gs1.org/docs/idkeys/GS1_
GTIN_Executive_Summary.pdf.

[17] Haya Hasan et al. “Smart contract-based approach for efficient shipment man-
agement”. In: Computers & Industrial Engineering 136 (2019), pp. 149–159.

[18] Christine V. Helliar et al. “Permissionless and permissioned blockchain diffusion”.
In: International Journal of Information Management 54 (2020), p. 102136. issn: 0268-
4012. doi: https://doi.org/10.1016/j.ijinfomgt.2020.102136. url: https:
//www.sciencedirect.com/science/article/pii/S0268401219314586.

[19] Alan Hevner. “A Three Cycle View of Design Science Research”. In: Scandinavian
Journal of Information Systems 19.2 (2007), p. 4.

[20] Wilfried Kopp. Cargo Remote: Speed up your Rust builds. [Online]. 2019. url: https:
//www.chevdor.com/post/2019/12/23/cargo-remote/#_enjoy_the_powaaa.

[21] Rick Kuhn, Dylan Yaga, and Jeffrey Voas. “Rethinking distributed ledger tech-
nology”. In: Computer 52.2 (2019), pp. 68–72.

[22] Jae Kwon. “Tendermint: Consensus without mining”. In: Draft v. 0.6, fall 1.11
(2014).

[23] Jae Kwon and Ethan Buchman. Cosmos Whitepaper. [Online]. 2019. url: https:
//github.com/cosmos/cosmos/blob/master/WHITEPAPER.md.

[24] libP2P - A modular network stack. [Online]. 2021. url: https://libp2p.io/.

[25] Francesco Longo et al. “Blockchain-enabled supply chain: An experimental
study”. In: Computers & Industrial Engineering 136 (2019), pp. 57–69.

[26] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. [Online]. 2008.
url: https://bitcoin.org/bitcoin.pdf.

BIBLIOGRAPHY 57

https://www.gs1.org/docs/idkeys/GS1_GSIN_Executive_Summary.pdf
https://www.gs1.org/docs/idkeys/GS1_GSIN_Executive_Summary.pdf
https://www.gs1.org/docs/idkeys/GS1_GTIN_Executive_Summary.pdf
https://www.gs1.org/docs/idkeys/GS1_GTIN_Executive_Summary.pdf
https://doi.org/https://doi.org/10.1016/j.ijinfomgt.2020.102136
https://www.sciencedirect.com/science/article/pii/S0268401219314586
https://www.sciencedirect.com/science/article/pii/S0268401219314586
https://www.chevdor.com/post/2019/12/23/cargo-remote/#_enjoy_the_powaaa
https://www.chevdor.com/post/2019/12/23/cargo-remote/#_enjoy_the_powaaa
https://github.com/cosmos/cosmos/blob/master/WHITEPAPER.md
https://github.com/cosmos/cosmos/blob/master/WHITEPAPER.md
https://libp2p.io/
https://bitcoin.org/bitcoin.pdf

Philipp Stangl Bachelorarbeit

[27] Shenle Pan, Ray Y. Zhong, and Ting Qu. “Smart product-service systems in
interoperable logistics: Design and implementation prospects”. In: Advanced
Engineering Informatics 42 (2019), p. 100996.

[28] Parity. Off-Chain Features. [Online]. 2021. url: https://docs.substrate.io/v3/
concepts/off-chain-features/.

[29] Aditi Rao, Blythe Hurley, and Rupesh Bhat. “From siloed to distributed: Blockchain
enables the digital supply network”. In: (2019).

[30] RocksDB - A persistent key-value store for fast storage environment. [Online]. 2021.
url: http://rocksdb.org/.

[31] Kai Fabian Schulz and Daniel Freund. “A Multichain Architecture for Distributed
Supply Chain Design in Industry 4.0”. In: International Conference on Business
Information Systems. Springer. 2018, pp. 277–288.

[32] Sergey Smetanin et al. “Blockchain Evaluation Approaches: State-of-the-Art and
Future Perspective”. In: Sensors 20.12 (2020), p. 3358.

[33] Manu Sporny et al. Decentralized Identifiers (DIDs) v1.0: Core architecture, data
model, and representations - W3C Working Draft 03 August 2021. [Online]. 2021. url:
https://w3c.github.io/did-core/.

[34] Alistair Stewart and Eleftherios Kokoris-Kogia. “GRANDPA: a Byzantine Finality
Gadget”. In: ArXiv abs/2007.01560 (2020).

[35] Substrate - The Blockchain Framework for a Multichain Future. [Online]. 2021. url:
https://substrate.io/.

[36] Substrate IBC Pallet. [Online]. 2021. url: https://crates.io/crates/pallet-
ibc.

[37] Martin Treiber and Arne Kesting. “Traffic flow dynamics”. In: Traffic Flow Dy-
namics: Data, Models and Simulation, Springer-Verlag Berlin Heidelberg (2013).

[38] USDA. Grades and Standards of Strawberries. [Online]. 2021. url: https://www.
ams.usda.gov/grades-standards/strawberries-grades-and-standards.

[39] Jack Van der Vorst, Adrie Beulens, and Teris van Beek. “Innovations in logistics
and ICT in food supply chain networks”. In: Innovation in Agri-Food systems (Jan.
2005).

[40] W3F. Collator Protocol. [Online]. 2021. url: https://w3f.github.io/parachain-
implementers-guide/node/collators/collator-protocol.html.

BIBLIOGRAPHY 58

https://docs.substrate.io/v3/concepts/off-chain-features/
https://docs.substrate.io/v3/concepts/off-chain-features/
http://rocksdb.org/
https://w3c.github.io/did-core/
https://substrate.io/
https://crates.io/crates/pallet-ibc
https://crates.io/crates/pallet-ibc
https://www.ams.usda.gov/grades-standards/strawberries-grades-and-standards
https://www.ams.usda.gov/grades-standards/strawberries-grades-and-standards
https://w3f.github.io/parachain-implementers-guide/node/collators/collator-protocol.html
https://w3f.github.io/parachain-implementers-guide/node/collators/collator-protocol.html

Philipp Stangl Bachelorarbeit

[41] Shangping Wang et al. “Smart Contract-Based Product Traceability System in
the Supply Chain Scenario”. In: IEEE Access 7 (2019), pp. 115122–115133.

[42] Gavin Wood et al. “Ethereum: A secure decentralised generalised transaction
ledger”. In: Ethereum project yellow paper 151.2014 (2014), pp. 1–32.

[43] Gavin Wood. Polkadot: Vision for a heterogeneous multi-chain framework. [Online].
2016. url: https://polkadot.network/PolkaDotPaper.pdf.

[44] Yarn - Safe, stable, reproducible projects. [Online]. 2021. url: https://yarnpkg.com/.

[45] Zibin Zheng et al. “An overview of blockchain technology: Architecture, consen-
sus, and future trends”. In: 2017 IEEE International Congress on Big Data. IEEE.
2017, pp. 557–564.

BIBLIOGRAPHY 59

https://polkadot.network/PolkaDotPaper.pdf
https://yarnpkg.com/

Philipp Stangl Bachelorarbeit

Glossary

Name Description Symbol
(plural)

Def

BABE Blind Assignment of Blockchain Extension is a
block authoring mechanism to assign elected
validators randomly for a certain block
production slot.

2.3

BFT Byzantine Fault Tolerance is the feature of a
distributed network to reach consensus even
when some of the nodes in the network fail to
respond or respond with incorrect
information.

2.3

BIF Blockchain Interoperability Framework 2.0
BoB Blockchain of Blockchains 2.0

CST Channel State Table 6.3

Density The number of parachains P at a given time t
in a transfer volume section.

ρ 7.1

DID A Decentralized Identifier is a globally unique
and persistent identifier. No centralized
registration authority is required because the
identifier is registered on a distributed ledger
and proved using cryptography.

5.2

DLT Distributed Ledger Technology 1.1

Flux The rate of flow of parachains. Q 7.1
FRAME Framework for Runtime Aggregation of

Modularized Entities enables developers to
create blockchain runtime environments from
a modular set of components called pallets.

3.2

FSCN Food Supply Chain Network 1.1

GRANDPA GHOST-based Recursive Ancestor Deriving
Prefix Agreement

2.3

60

Philipp Stangl Bachelorarbeit

Name Description Symbol
(plural)

Def

GSIN The Global Shipment Identification Number is a
number assigned by a seller and shipper of
goods to identify a shipment comprised of
one or more logistic units that are intended to
be delivered together.

4.4

GTIN The Global Trade Item Number can be used by a
company to uniquely identify all of its trade
items.

4.3

GUI Graphical User Interface 1.3

HRMP Horizontal Relay-routed Message Passing 2.3

IBC Interblockchain Communication Protocol 2.3
IDE Integrated Development Environment 3.3

OCW The Off-Chain Worker subsystem allows
execution of long-running and possibly
non-deterministic tasks (e.g., web requests)
which could otherwise require longer than
the block execution time.

3.2

P2P Peer-to-Peer 1.1
PDO Private Data Object 1.2
PoV Proof of validation 6.2

RBAC Role-based Access Control 3.2
RPC Remote Procedure Call 4.0

UML Unified Modeling Language 1.4

Velocity The speed at which units are exchanged by a
parachain in a cross-chain transfer.

u 7.1

Wasm WebAssembly can be compiled from many
languages, including the Rust programming
language. Substrate-based chains use a
WebAssembly binary to provide portable
runtimes that can be included as part of the
chain’s state.

5.1

XCM Cross-Chain Messaging 3.2
XCMP Cross-Chain Message Passing is a protocol that

parachains use to send messages to each
other.

2.3

Glossary 61

Philipp Stangl Bachelorarbeit

List of Figures

1.1 Types of blockchain . 3
1.2 Blockchain data structure (adopted from Zheng et al. [45]) 4
1.3 Schematic diagram of a P2P network . 5
1.4 Schematic diagram of an FSCN (based on Van der Vorst, Beulens, and

Beek [39]) . 6
1.5 Thesis Structure . 8

3.1 Illustrative example of a single supply chain (opaque) within an FSCN 17
3.2 The three-tier system architecture of ChainFresh 19
3.3 The application tier of the ChainFresh system 20
3.4 An overview of the business logic, decomposed into pallets 20
3.5 The relay tier of the ChainFresh system 21

4.1 The dashboard main view . 24
4.2 The members view . 25
4.3 The organizations view . 26
4.4 The products view . 27
4.5 The shipments view . 28
4.6 The traces view with a selected shipment 29
4.7 The documents view . 29

5.1 Substrate node architecture (adopted from Parity [28]) 31
5.2 State graph of shipment updates . 34
5.3 Collator node architecture with the OCW subsystem (adopted from

Parity [28]). Core subsystems in gray, OCW subsystem in orange. 35

6.1 HRMP opening sequence . 39
6.2 HRMP closing sequence . 40

7.1 Volume–time discretization . 44
7.2 Test workflow . 46
7.3 Transfer volume velocities . 46

A.1 Polkadot{.js} UI Blockchain explorer. On the left hand side, recent blocks
with their author are listed. On the right hand side, recent events inside
recent blocks are listed. 53

62

Philipp Stangl Bachelorarbeit

A.2 Holistic ChainFresh system design overview for two interoperating
organizations. 54

A.3 Block inclusion process . 55

LIST OF FIGURES 63

Philipp Stangl Bachelorarbeit

List of Tables

7.1 ChainFresh artifacts . 47
7.2 Frontend dependencies table . 48

64

	I Foundations
	Introduction
	Fundamentals
	Blockchain Technology
	Food Supply Chain Network

	Motivation
	Research Questions
	Thesis Structure

	State of the Art
	Blockchain-Enabled Supply Chain
	Solo-Chain Approaches
	Multi-Chain Approach

	Blockchain Interoperability Framework
	Public Connectors
	Hybrid Connectors

	Blockchain of Blockchains
	Network of Heterogeneous State Machines
	Unified State Machine with Heterogeneous Shards

	Summary

	II ChainFresh
	The ChainFresh Approach
	The Benefits for Supply Chain Participants
	Interoperability
	Controlled Transparency

	Architectural Overview of ChainFresh
	Presentation Tier
	Application Tier
	Relay Tier

	Decision for the Substrate Framework
	Summary

	Presentation Tier
	"Members" View
	"Organizations" View
	"Products" View
	"Shipments" View
	"Traces" View
	"Documents" View

	Application Tier
	Collator Node Architecture
	Business Logic
	Role-Based Access Control
	Registrar
	Document Registry
	Product Registry
	Product Tracking

	Cumulus
	Summary

	Relay Tier
	Parachain Registration
	Parachain Block Inclusion
	Cross-Chain Asset Transfers
	Opening a Messaging Channel
	Executing a Cross-Chain Transfer
	Closing a Messaging Channel

	Summary

	III Conclusions
	Evaluation
	Cross-Chain Messaging
	Evaluation Approach
	Adapted Fluid Dynamics Equations
	Discretization
	Evaluation Workflow
	Numerical Results

	Hard Disk Footprint
	System Limitations
	Summary

	Future Work
	Conclusion
	ChainFresh System
	Bibliography
	Glossary
	List of Figures
	List of Tables

