
Ostbayerische Technische Hochschule Amberg-Weiden
Fakultät Elektro- und Informationstechnik

Course of study Industry 4.0 Informatics

Bachelor Thesis

by

Adrian Rall

Konzeption und Entwicklung eines
Dependency-Update-Mechanismus zur automatischen

Distribution neuer Software-Versionen im
Sondermaschinen- und Anlagenbau

Conception and Development of a Dependency Update
Mechanism for the Automatic Distribution of a New
Software Version in Special Machinery and Industrial

Engineering

Ostbayerische Technische Hochschule Amberg-Weiden
Fakultät Elektro- und Informationstechnik

Course of study Industry 4.0 Informatics

Bachelor Thesis

by

Adrian Rall

Konzeption und Entwicklung eines
Dependency-Update-Mechanismus zur automatischen

Distribution neuer Software-Versionen im
Sondermaschinen- und Anlagenbau

Conception and Development of a Dependency Update
Mechanism for the Automatic Distribution of a New
Software Version in Special Machinery and Industrial

Engineering

Processing time: from November 2nd, 2022
to April 28th, 2023

Adrian Rall Bachelor Thesis

First Examiner: Prof. Dr.-Ing. Christoph P. Neumann

Second Examiner: Prof. Dr. rer. nat. Kurt Hoffmann

iii

Ostbayerische Technische Hochschule Amberg-Weiden
Fakultät Elektro- und Informationstechnik

Confirmation according to § 12 APO

Name and first name
of the student: Rall, Adrian

Course of studies: Industry 4.0 Informatics

I confirm that I have independently written the Bachelor Thesis entitled:

Conception and Development of a Dependency Update Mechanism for the
Automatic Distribution of a New Software Version in Special Machinery and

Industrial Engineering

I have not submitted it for examination elsewhere, have used no sources or aids other
than those indicated, and have identified any verbatim or analogous citations as such.

Date: April 28, 2023

Signature:

Ostbayerische Technische Hochschule Amberg-Weiden
Fakultät Elektro- und Informationstechnik

Bachelor Thesis Zusammenfassung

Student (Name, Prename): Rall, Adrian
Course of study: Industry 4.0 Informatics
Supervisor: Prof. Dr.-Ing. Christoph P. Neu-

mann
Carried out at (company/authority/university): BHS-Corrugated Anlagen- und

Maschinenbau GmBH
Supervisor of the Company: Benedikt Bräutigam
Date of issue: November2nd, 2022 Deadline: April28th, 2023

Title:

Conception and Development of a Dependency Update Mechanism for the
Automatic Distribution of a New Software Version in Special Machinery and

Industrial Engineering

Abstract in English:

This thesis presents the design and implementation of an automated dependency
update mechanism for NPM and NuGet packages and GitHub submodules in an
organizational-wide repository structure. The mechanism improves an existing but
inefficient process by considering the dependencies of packages and submodules to
optimize the storage, management, and handling of the update mechanism. The design
and development of the mechanism are tailored to organizational-wide enterprise
servers but are easily extendable to other repository structures. The procedure is
implemented in two steps in the overall process: first, all relevant data are collected
and stored; second, a recursive breadth-first search with a topological sorting algorithm
is performed for directed acyclic graphs. The result can be integrated into the business
workflow in the future.

Abstract in German:

In dieser Arbeit wird der Entwurf und die Implementierung eines automatischen
Abhängigkeitsaktualisierungsmechanismus für NPM- und NuGet-Pakete und GitHub-
Submodule in einer organisationsweiten Repository-Struktur vorgestellt. Der Mech-
anismus verbessert einen bestehenden, aber ineffizienten Prozess, indem er die Ab-
hängigkeiten von Paketen und Submodulen berücksichtigt, um die Speicherung,

Adrian Rall Bachelor Thesis

Verwaltung und Handhabung des Update-Mechanismus zu optimieren. Das De-
sign und die Entwicklung des Mechanismus ist jeweils auf organisationsweite Un-
ternehmensserver zugeschnitten, lassen sich aber leicht auf andere Repositorystruk-
turen erweitern. Das Verfahren wird in zwei Schritten in den Gesamtprozess implemen-
tiert: Zunächst werden alle relevanten Daten gesammelt und gespeichert; anschließend
wird eine rekursive Breitensuche mit einem topologischen Sortieralgorithmus für
gerichtete azyklische Graphen durchgeführt. Das Ergebnis kann in Zukunft in den
Geschäftsablauf integriert werden.

Keywords: Dependency update mechanism, reusable software parts, object-oriented
project management, GitHub actions, automation, workflow integration

vi

Adrian Rall Bachelor Thesis

Contents

1 Context 1
1.1 Motivation . 1
1.2 Context of this thesis . 2
1.3 Objective . 2

2 BHS Corrugated 3
2.1 Introduction of the company . 3
2.2 BoxPlant 2025 - upgrade as a service . 4
2.3 iCorr - flagship for digitalization . 4
2.4 Conclusion . 4

3 Questionnaire 6
3.1 Quality criteria . 6
3.2 Hypotheses . 7
3.3 Results questionnaire . 7
3.4 Conclusion . 8

4 Usage and embedding 10
4.1 Integration into the company . 10

4.1.1 CI/CD . 10
4.1.2 Agile V-model . 11

4.2 Old Dependency-Update mechanism . 14
4.2.1 Background of the Old Mechanism 14
4.2.2 Abstract functioning of the old mechanism 14

4.3 Weaknesses and limitations of the old mechanism 15
4.4 Cost savings with improved dependency update

mechanism . 15
4.5 Criticism of the old mechanism . 16
4.6 Benefits due to the mechanism . 16

5 Literature overview and state of the art 17
5.1 DevBots . 17

5.1.1 Dependabot . 18
5.1.2 Renovate . 18
5.1.3 Greenkeeper . 18

vii

Adrian Rall Bachelor Thesis

5.1.4 Further Alternatives . 18
5.2 Limitations and problems . 19

5.2.1 Companies experiences with Dependabot 20
5.3 Advantages of external bots . 21
5.4 Conclusion . 21

6 Methodology 22
6.1 Purpose . 22
6.2 Background information . 22

6.2.1 NPM . 22
6.2.2 NuGet . 23
6.2.3 Submodules . 23

6.3 JSON format for relevant information . 23
6.4 Directed acyclic graph . 26

6.4.1 Definition . 26
6.4.2 Complexity . 26
6.4.3 Depth-first Search . 26
6.4.4 Breadth-first search . 27
6.4.5 Cycle detection . 27
6.4.6 Topological Sorting . 28

6.5 Conclusion . 28

7 Implementation 29
7.1 Description of the implemented solution 29
7.2 Action No. 1: Write2Inventory . 30

7.2.1 Purpose of the Action . 30
7.2.2 Code and functionality . 30
7.2.3 Conclusion . 33

7.3 Action No. 2: “DependencyUpdate” . 34
7.3.1 Purpose of the Action . 34
7.3.2 Code and functionality . 34

7.4 Challenges and limitations . 40
7.4.1 Challenges and limitations of “Write2Inventory” 40
7.4.2 Challenges and limitations of DependencyUpdate 41

7.5 Conclusion . 41

8 Experimental Results 42
8.1 Test data and methodology . 42

8.1.1 Test applications for Write2Inventory 42
8.1.2 Test applications for “DependencyUpdate” 43

8.2 Analysis and discussion of the results . 43

9 Summary and future work 45
9.1 Summary of the results . 45
9.2 Future work . 45

CONTENTS viii

Adrian Rall Bachelor Thesis

Literaturverzeichnis 47

Abbildungsverzeichnis 50

Tabellenverzeichnis 51

A Rohdaten 53
A.1 Statistical methods . 53
A.2 Statistical evaluation of the questionnaire 53

A.2.1 Question (F10) Push-Pull-cycles 54
A.3 Example output of Write2Inventory . 56
A.4 Whole workflow . 58

CONTENTS ix

Adrian Rall Bachelor Thesis

Symbols and formula signs

Sign Meaning
€ Euro
∈ Element of

x

Adrian Rall Bachelor Thesis

List of abbreviations

Abbreviation Full Form
STEM Science, Technology,Engineering, and Mathematics
BSI German Federal Office for Information Security
CVSSS Common Vulnerability Scoring System
RCE Remote Code Execution
BHS BHS Corrugated Maschinen- und Anlagenbau GmbH
DE Digital Engineering
DS Digital Solutions
GHES GitHub Enterprise Server
H0 Null hypothesis
CI Continuous Integration
CD Continuous Deployment
MQTT Message Queuing Telemetry Transport
OPC UA Open Platform Communications Unified Architecture
PLC Programmable Logic Controller
NPM Node Package Manage
SHA Secure Hash Algorithm
JSON JavaScript Obect Notation
DAG Directed acyclic graph
DFS Depth-first search
BFS Breadth-first search

xi

Adrian Rall Bachelor Thesis

Chapter 1

Context

1.1 Motivation

According to the statistics of the Federal Employment Agency [1], [2], the number
of unfilled positions in STEM professions (professions from the fields of Science,
Technology, Engineering, and Mathematics) in Germany has been 263,000 in 2019. In
2018, an average of 66% German companies had difficulties filling positions advertised
specifically for IT professionals.

To counteract the shortage of skilled workers, one option is to outsource routine
programming tasks to offshore IT services. Corporate IT departments are thus allowed
the opportunity to focus on creating relevant program sections where company-specific
knowledge is needed. This system of management has a project-related, but also
company-related aspect. Over time, an increasing number of projects develop with
different software components and versions. Automating the update management
reduces the time and effort required to keep systems and associated documentation
up to date. Kula et al. (2018) [3] analyzed whether users regularly update third-party
packages that are included in their code are updated to the latest version. The results
suggest that users rarely update their libraries. Reasons are said to be the additional
workload, a lack of motivation, or the incorrect assessment of the risk of compromise.

In Addition, Bogart et al. (2015) [4] mention in their surveys, that “non-technical forms
of organization” [3], such as workload and especially lack of understanding of the
responsibilities of developers play a decisive role in whether updates are migrated
or not. A habituation effect and the associated trust in a particular library version
resulting in a lack of willingness to incorporate newer versions, also play a role, even
if a trend toward shorter latency is discernible according to the study. However, it is
not only the reduced workload of the employees that must be taken into consideration
but also the minimization of security-related bugs.

According to the German Federal Office for Information Security (BSI), “10% more
vulnerabilities [in software products] became known in 2021 than in the previous
year. More than half of them had high or critical scores according to the Common

1

Adrian Rall Bachelor Thesis

Vulnerability Scoring System (CVSS)” [5]. It is said that 13% of the vulnerabilities
alone have been in the critical range.

The research of Bier et al. (2021) [6] for example indicates a rather small number of
attachment points for a broad fix of “Remote Code Execution” (RCE) vulnerabilities.

1.2 Context of this thesis

This paper is being carried out in the Digital Engineering program of the company
BHS Corrugated Maschinen- und Anlagenbau GmbH.

The Digital Engineering program has migrated to GitHub Enterprise in 2021. The
program has to coordinate mechanics, electronics, and software development. For
this reason, it has been decided to create a directory structure that can coordinate
the scope of work from the respective departments. The modules stored in it should
be as modular and reusable as possible. To ensure that the modules always remain
up-to-date and consistent, a dependency update mechanism was implemented in 2021.
The mechanism fulfills its purpose but shall be reconceptualized due to its inefficient
operation.

1.3 Objective

The main objective of the work is to design and implement a dependency update
mechanism. Initially, NPM packages, NuGet packages, and submodules should be
able to be kept up to date automatically and without manual intervention in the entire
department. Easy extensibility for further packages of different types (e.g. Maven,
Docker Images, Unity) is to be taken into account. Requirements for the designed
solution (in comparison to the current dependency update mechanism) are improved
efficiency in terms of processing time, a consistently low or even lower error rate, as
well as improved documentation for traceability for developers.

In addition, the internally created directory structure is evaluated and assessed. It
will be investigated whether the structure supports maintenance, modularity, and
reusability. The evaluation and possible suggestions for improvement will be based on
comparative scientific literature.

Chapter 1. Context 2

Adrian Rall Bachelor Thesis

Chapter 2

BHS Corrugated

2.1 Introduction of the company

BHS Corrugated is “a global supplier of mechanical engineering, plant engineering,
lifecycle service and digital solutions for the complex requirements of the corrugated
board industry” [7].“With more than 3,000 employees worldwide, the company is
represented in over 20 countries, not counting [the] headquarters in Weiherhammer,
Germany” [8].

Figure 2.1: Bhs corporate statistics

BHS was originally founded in 1717 as a hammer mill. Since its reorientation in 1960,
the company has developed into the world’s leading supplier of corrugators. BHS offers
a complete range of solutions for corrugated production, from individual machines to
entire production lines, from corrugating rolls, customer support, maintenance, and
repair to automated intralogistics. This broad product range and strategies such as
dedicating 5% of annual sales to research and development of new technologies have
made BHS Corrugated the world market leader for corrugators. With a market share of
more than 50% for corrugators, 70% of all cardboard boxes worldwide come from BHS
machines. To maintain its market position, the company is striving to transform itself

3

Adrian Rall Bachelor Thesis

from a classic machine builder to an Industrie 4.0-capable company. This should ensure
an improvement in process automation, process optimization, increase in production
efficiency as well as the improvement of service in the direction of digitalization.
Not least due to the ever-increasing networking and digitalization, BHS Corrugated
regularly wins prizes and honors such as the "TOP 100" award, "German Brand Award"
or "Best Managed Companies Award".

2.2 BoxPlant 2025 - upgrade as a service

BoxPlant 2025 intends the company’s vi-
sions and goals for 2025 and beyond. This
is intended to make the future image of
steadily increasing automation and auton-
omization concrete and tangible. This in-
cludes the provision of digital twins, the
automation of intralogistics, improved mod-
ularization of plants, and digital solutions
for the corrugator or digital inline printing.

2.3 iCorr - flagship for digitalization

The department for the support and development of the iCorr product family is
considered the showcase model for digitalization at BHS Corrugated. While GitHub
has only been adopted on a company-wide basis in 2021, the Department Digital
Solutions (DS) around iCorr has been using GitHub since 2017. Further, most iCorr
departments are already fulfilling their minimum target requirements of the BoxPlant
2025 agenda.

2.4 Conclusion

"Staufen AG has compiled the German Industry 4.0 Index every year since 2014. While
around one in two companies is already operationally implementing a smart factory
[...] [o]nly 7% of companies have already implemented the ’future project Industry 4.0’
to a greater extent in their plant halls and development departments." [9]

Transferred to the company, business units such as Digital Solutions (DS) already
have a high degree of digitalization. However, the majority of the company is still
in the process of developing into a highly digitalized and networked factory. To a
certain extent, the company seems to mirror the Staufen AG study in miniature. Some
departments always use and implement the latest digital technology. On the other
hand, it seems that a large number of departments are taking their first steps toward
networking and digitalization.

Chapter 2. BHS Corrugated 4

Adrian Rall Bachelor Thesis

In order to substantiate this impression quantitatively, a questionnaire has been sent
out to two departments to clarify the situation. Among other things, an inventory of
common programming tools, programming paradigms, and organisational behaviors
has been documented and evaluated.

Chapter 2. BHS Corrugated 5

Adrian Rall Bachelor Thesis

Chapter 3

Questionnaire

The questionnaire is intended to reflect the current state of technology and work
processes (November/December 2022), to prove certain hypotheses on the degree of
object-oriented programming, and the implementation and understanding of semantic
versioning with the help of the survey.

Both inductive and deductive approaches have been used within the survey. Initially,
hypotheses have been formulated and tested through the survey (deductive approach).
In addition, new insights have been gained through the evaluation of the survey. These
have been used to create a quantitative image of the work environment and work
processes and to generate new conclusions (inductive approach).

3.1 Quality criteria

The main quality criteria "validity," "reliability," and "objectivity" for the questionnaire
have been considered and implemented as follows:

Himme (2007) defines in [10] quality criteria:
Definition 3.1.1 (Validity) As part of the validity check, it is necessary to ask whether the
instrument measures what is supposed to measure.
Definition 3.1.2 (Reliability) The criterion refers to the question of how the measurement
is made and demands that the measurement results should be reproducible upon repeated
measurement.
Definition 3.1.3 (Objectivity) Objective measurement results are obtained when different
persons who carry out the measurements independently get the same measurement results.

The objectivity of the implementation (the influence of the interviewer and the research
environment on the respondents) [10] was ensured by standardized questions, volun-
tary participation, the anonymity of the participants, and the absence of the surveyor
(the participants were able to answer the survey online and in the time period they
chose themselves without a supervisor). The objectivity of the evaluation [10] was
ensured by a statistical analysis of the quantitatively collected data. The data were

6

Adrian Rall Bachelor Thesis

numerically scaled. Thus, no interpretation was possible of the answers given. Only
answers in the comment section could be added and indicated as qualitative text. For
this purpose, the participants could add comments to each question in free language.

3.2 Hypotheses

In order to be able to substantiate the main questions, the following three hypotheses
were formulated:
Hypothesis 1 H0: There is no significant correlation between the sub-questions regarding the
implementation of object orientation

This thesis has been verified using a 7-point Likert scale in conjunction with thirteen
questions. The survey has been a self-assessment. No other quantitative measurement
methods have been used for this purpose. In total, the questions were answered by 15
people.

Hypothesis 2 H0: There is no significant difference in the frequency distributions between
category 2 + 3 + 4 and category 1 for question 13.

It has been ascertained which preferences employees have with regard to the semantic
notation for the inclusion of foreign libraries/packages. We can determine how much
users trust the libraries or packages they use based on this.

Hypothesis 3 H0: The employees of the company do not significantly use the main branch for
adding features

With this hypothesis, it is to be tested whether employees use the exact meaning of
semantic versioning for programming features. A minor update often corresponds
to adding new features, while a patch update in semantic versioning corresponds to
fixing bugs. In addition, conclusions can be drawn about the frequency of the upload
behavior of the main branch. The dependency update mechanism should be activated
when changes are made to the main branch.

3.3 Results questionnaire

The survey revealed that GitHub Enterprise is not yet used across the company. One
department did not have direct access to the GitHub Enterprise Server (GHES). The
departments that already have access to the Github Enterprise Server have partially
implemented Github Actions for the Continuous Integration/Continuous Deployment
(CI/CD) cycle. There seem to be no other technical automation tools besides GitHub
Actions.

Hypothesis 1 was examined with 13 questions in the form of a 7-point Likert scale.
The range of answers was from ’I don’t agree at all’ to ’I completely agree’. Six of
the 13 questions were designed with regard to the degree of implementation of the

Chapter 3. Questionnaire 7

Adrian Rall Bachelor Thesis

object-oriented principles. The detailed statistical evaluation points of the questionnaire
can be found in the appendix (A).

Figure 3.1: 7-point Likert scale

The sub-questions specifically aimed at the use of object-oriented principles. There
is a strong correlation. Enough participants have answered. The statistical test can
be considered valid and the null hypothesis can be rejected. In combination with the
examination of significant correlations regarding sub-questions of No. 3 and No. 13, it
is noted that employees of the company submit code to the main branch depending on
project progress, not on a specific time frame. Nevertheless, significant correlations
have been shown to exist between ’I create simple but meaningful comments’ and
’Most of my classes have only one responsibility’ with the question ’How often does
your code get merged to the MAIN branch (on average)?’. Hypothesis 2 however could
not be rejected due to the small number of questions answered. However, there is a
significantly strong correlation between the naming of branches and the preference for
package version selection. This suggests that employees adopt versioning principles
and implement them in other areas of their work environment.

Hypothesis 3 could also not be rejected due to the small number of answers. Nev-
ertheless, a clear preference for using sub-branches is evident. The survey results
support the hypothesis that small program units designed according to object-oriented
principles are being created in sub-branches. The sub-branches are named according
to their functionality, whether they represent an extension of functionality ("feature"
and consequently a "minor update"), or the correction of functional errors ("bugs" and
consequently a "patch update"), and merged into the main branch after completion.

3.4 Conclusion

The assumption that departments of the company dealing in software products do
not use the desired state of the art is supported by the survey. The fact that an entire
department that participated in the survey does not have access to the company’s
Github Enterprise Server shows a varying degree of networking and digitalization. The
impression that the company is an approximate reflection of the German landscape
in terms of the degree of digital industrialization is supported by the survey. On the

Chapter 3. Questionnaire 8

Adrian Rall Bachelor Thesis

positive side, it can be said that the automated update mechanism will make it easier
for the departments to deal with. Departments that will interact with GHES in the
future are already being relieved of work in the background. Thus, the dependency
update mechanism facilitates the efforts to raise all departments to a common, more
advanced level of networking and digitalization as quickly as possible.

Based on the survey, specifications, and automation strategies were derived, which
have been included in this bachelor thesis.

1. There is a basic understanding of semantic versioning.

2. A basic understanding and implementation of object-oriented working methods
are available.

3. Work is generally carried out in small units.

4. There is no unified programming language, ergo no heterogeneous IDE working
environment, even among departments. It follows that the dependency update
mechanism must deal with packages from different management systems (NPM
for node.js, NuGet for C#).

Chapter 3. Questionnaire 9

Adrian Rall Bachelor Thesis

Chapter 4

Usage and embedding

This chapter is dedicated to embedding the work in a concrete context of usage. This
chapter explores the history of the current update mechanism, how it is used, and why
it needs to be revised.

4.1 Integration into the company

4.1.1 CI/CD

"Continuous Integration, Delivery, and Deployment (CI/CD) is a software development
practice where developers frequently integrate their code changes into a central repos-
itory. which is followed by automatic builds, tests, and deployments that verify the
changes, and, if successful, deliver them to the production environment." ([11]). During
the CI phase, code changes from multiple developers are operated and managed in
a shared repository. Integration can occur multiple times a day and is accompanied
by automated tests to ensure that the changes do not lead to conflicts or errors in the
system. This practice improves both code quality and the time to release software.
(Compare [11])

"Continuous Deployment (CD) is a practice of automatically releasing code changes
into the production environment after passing through the CI/CD pipeline. The CD
pipeline automatically deploys the successful build to the production environment,
providing a faster feedback loop to the end-users." ([11]) Continuous Delivery and
Continuous Deployment are often used synonymously. However, Continuous De-
ployment describes the process of automatically deploying changes to production
without human intervention. In Continuous Delivery however, changes are deployed
automatically, but the release is manual. (Compare [12])

The dependency update mechanism is being used in the integration and delivery phase
of a project.

10

Adrian Rall Bachelor Thesis

4.1.2 Agile V-model

Background

iCorr products provide services to support the use of the company’s products. These
products are designed to improve service performance. However, the products are not
critical to the operation of a corrugator; they simply enhance the customer’s comfort
level. Departments around iCorr products can and do work in an agile context. All
programs and modules created, culminating in a few fixed-end products.

Digital Engineering however forms the basis and a test environment for the trans-
formation of the inventory from a mechatronic perspective. The final product is the
digital twin. However, the modules can create added value for customers in the form
of further products and modifications. At present, however, the digital twin is only
used internally. Nevertheless, certain modules of the Digital Engineering program are
incorporated into the development of end products. These modules, in turn, may exist
in multiple variations, as they have been adapted slightly to meet the needs of different
customers. In addition, these variations can have different versions (see Figure 4.1).

Figure 4.1: Development of versions and variants p. 555 [13]

Illustration of the agile V-model

The work of the Digital Engineering program covers mechanics, electronics, and
software development. Examples of the scope of work are MQTT communication, OPC
UA data exchange, programming of the controllers (PLC), or the cyberphysical real-
time simulations of a corrugator. A classic agile working style hasn’t been implemented.
Instead, a combination of V-model and agile development has been developed (see
Figure 4.2). Following the strict hierarchy of the V-model the individual components are
assigned to one of the levels “Basics”, “Components”, “Technologies”, or “Modules”.
The names of the hierarchy levels originate from the three sectors of mechanics,
electronics, and software development.

Chapter 4. Usage and embedding 11

Adrian Rall Bachelor Thesis

Adapting the advantages of object-oriented programming

The agile V-model aims, based on object-oriented programming, to be modular (en-
capsulation), flexible (polymorphism), secure (encapsulation and abstraction), easily
extensible and reusable (inheritance). Functions and code fragments of a lower level are
only released to the next higher level, when specified safety and quality characteristics
requirements have been met(inspired by the verification and validation principles of
the V-model). Code fragments of one level can then access and use units of the same
or the next lower level. This approach enables modularity and reusability of code
fragments for all developers and allows for an agile way of working with the provided
elements, while maintaining the quality of the classical V-Model approach.

The strict subdivision in the hierarchy levels and the respective test procedures are
intended to guarantee the most error-free process possible.

Figure 4.2: agile V-Modell of ’DigitalEngineering’ department

Evaluation of the agile V-Model

Compared to the approaches to "work faster [...] [or] work smarter", the approach
of "work avoidance" brought by far the greatest benefit [14]. In order to have a
meaningful and applied reusability practice, Griss et al. (1995) suggest to establish
a policy for reusability [15]. Problems with the internal “building block system” in
Digital Engineering are finding the right modules or the knowledge about the existence
of modules. If there are too many modules, the overview can be lost and too much
complexity can result. Changes to a module can lead to problems if it is too integrated.
Systematic approaches for solving / minimizing the problems are:

• project-related naming of the repositories

Chapter 4. Usage and embedding 12

Adrian Rall Bachelor Thesis

• module versioning

• Dependency management (dependency update manager)

• Component testing

• documentation

• uniform code quality via style guides

• own management consultant

Thus, a systematic strategy inside Digital Engineering can be identified. The agile V-
model in combination with the automatic dependency update mechanism (in general)
fulfills the aspects of "version and configuration control, repository management, and
adaptation to change" [14], which are highly recommended by Boehm (1999).

The study by Baldassarre et al. (2005) indicates that without systematic reusability,
complexity actually increases. However, with a systematic reusability strategy, there is
a significant reduction in complexity and an increase in reusability and code quality
[16].

Tomer et al. (2004) [17] have proposed the following model 4.3:

Figure 4.3: model for reuse by [17]

The model of Tomer et al. (2004) [17] has the same characteristics as the agile V-model
of Digital Engineering. Tomer et al. (2004) use a three-dimensional representation in
their model. Similar to BHS, two dimensions represent the modules and their provision
on next higher hierarchical levels. In contrast to the BHS model, versioning in the
context of maintenance cycles is represented on a third axis. Although the BHS does

Chapter 4. Usage and embedding 13

Adrian Rall Bachelor Thesis

not take it up graphically in the model, different versions of modules are available.
The BHS model, with its strict and automatic update policy, virtually eliminates the
third axis, the «maintenance axis», since the update mechanism generally keeps the
repositories up-to-date in all their dependencies.

4.2 Old Dependency-Update mechanism

4.2.1 Background of the Old Mechanism

The old update mechanism was not intended for the extent to which it is currently
used. In the meantime, the approach, agile V-model, has been transferred to several
departments. Each department has its own corresponding directory structure created
according to the agile V-model. There are only a few intersections between the
individual structures, for example via the packages available internally. Within the
agile V-model, the units are kept granular and tested for integration errors or functional
errors over several levels. If all test runs are successful, it can be assumed that the
modules can be securely integrated into other projects. The developed dependency
update mechanism therefore only automates the appropriate triggering of the update
process of the modules. Thus, as a rule, elements are kept at the same level across
the entire directory structure, and locking an element to a specific version status is
possible.

4.2.2 Abstract functioning of the old mechanism

The old mechanism first clones the inven-
tory repository and reads all files named
after the repository name. It then executes
a dispatch event for each item listed. A
Github dispatch event contains specific in-
formation that can be used by workflows
to perform certain actions. If it is a sub-
module or an NPM package, specific logic
is executed for it (see Figure 4.2.2).

The approach can be described as a sequential/iterative process in a simplified and
more generalized form. Each repository has knowledge only about the repositories
it directly depends on. After updating those repositories, the updated repositories
become new starting points and proceed to update only the repositories they are aware
of, see Figure 4.4.

Chapter 4. Usage and embedding 14

Adrian Rall Bachelor Thesis

4.3 Weaknesses and limitations of the old mechanism

As can be seen in Figure 4.4, repository «K» is updated two times. It will be updated
because of its dependency on «A» and its dependency on «E». Repository «P» would
appear four times in the process. Each build and update of a repository takes time and
resources. Scaling up to more than 360 repositories results in unnecessary extra work.

Figure 4.4: abstraction of old mechanism

4.4 Cost savings with improved dependency update
mechanism

Duration Current costs 30% savings 60% savings
Per hour 4,16€ 2,91€ 1,66€
12 hours 49,92€ 34,94€ 19,97€
4 days (96 hours) 399,36€ 279,55€ 159,74€
30 days (1 month) 2.995,20€ 2.096,64€ 1.198,08€

Table 4.1: Cost comparison for different savings

A single run of the dependency update mechanism takes between 12 hours (for a
single trigger) and 4 days (for multiple simultaneous triggers). After 4 days, the run
is generally terminated. For a minimum runtime of 12 hours, the amount of current
cost to 49.92€, while for a run of 4 days, the costs are nearly 400€ (wasted, as the run is
terminated). According to Benedikt Bräutigram, an expert software engineer at BHS,
the improved dependency update mechanism is expected to reduce runner runtimes
by 30% to 60%. This means that for the minimum runtime of 12 hours, there would be
a reduction to 8-5 hours. If the runtime could be reduced from 12 hours to 5 hours,

Chapter 4. Usage and embedding 15

Adrian Rall Bachelor Thesis

savings of approximately 30€ could be achieved (49.92€ - 19.97€ = 29.95€). A 30%
increase in efficiency would correspond to a reduction of about 15€ (49.92€ - 34.94€ =
14.98€). In the case of a 4-day run, the cost savings would be 240€ (with a 60% increase
in efficiency) or 120€ (with a 30% improvement in efficiency). Another important
expected benefit is the reduction of the termination rate due to shorter runtimes, as
the mechanism is terminated by default after 4 days of runtime. Currently, since the
agile V-model is already being applied in several departments, up to 10 runners are
required simultaneously during peak times (when not in use, runners are shut down
and do not incur any costs).

4.5 Criticism of the old mechanism

As mentioned before, the update process through the old mechanism is time-consuming,
as it has to search and update each repository individually. All occurrences are pro-
cessed one after the other without keeping an eye on the overall structure. This results
in multiple accesses to the same packages and repositories. Another aspect is the
difficult traceability. Currently, it is only possible to check the correctness of the
mechanism through documentation with great effort.

4.6 Benefits due to the mechanism

Despite the limitations and problems within the mechanism, 15,673 commits could
be started automatically during the period April 2022, to April 2023. Within the
period, there have been only two problems due to updates of modules in projects. The
mechanism thus fulfills its purpose, only the efficiency needs to be improved.

Chapter 4. Usage and embedding 16

Adrian Rall Bachelor Thesis

Chapter 5

Literature overview and state of the art

The Digital Engineering Programme approach of the agile V-model is not a standard-
ized solution. The mechanism used within (to manage the problem of consistency and
safety of the modules) has not been designed to be extended by other code fragments
from the beginning. Nevertheless, the requirements for the mechanism have increased
and other use-case scenarios of a similar nature have been formulated. It has been
adapted to the new requirements, but the extensions become more and more complex.
Therefore, an alternative is being sought. In the following, the current state of the
art for managing dependencies is examined and compared with the requirements
of the BHS working environment. This is to determine whether there are possible,
widespread solutions already available that meet the expectations and could replace
the implementation of the old mechanism. It also serves to get an overview of the
strategies and implementation concepts used by similar algorithms. A possible alterna-
tive to implementing a self-developed dependency update mechanism with GitHub
Actions, like the old, but the working mechanism, is to use DevBots. Automated
solutions such as DevBots, as presented in the studies by Erlenhov [18], [19], [20] can
help to facilitate this process. The study by Wessel et al. (2018) stated that in 2017,
26% of the open source projects they studied already included bots for support, and
the trend is rising (see [21]). The advantages and disadvantages of the most common
DevBots are therefore examined.

5.1 DevBots

DevBots are a new type of software tool designed specifically for programmers to
support their daily work. (Compare [18], [19]) DevBots work automatically and
autonomously and can perform tasks such as managing dependencies, updating
libraries, checking code quality, and running tests. DevBots are often referred to as
«personas» [19] and can help developers to work more efficiently and save time.

Erlenov’s article [18] notes that there are several types of DevBots, including build
helpers, code analysis supporting tools, and dependency management bots such
as Dependabot, Renovate, and Greenkeeper. All three tools focus on dependency

17

Adrian Rall Bachelor Thesis

management in software projects and are designed to help developers by automating
update processes.

5.1.1 Dependabot

Dependabot [22] is a bot that automatically creates pull requests for developers to
update dependencies in repositories. The bot uses open-source databases such as
Rubygems or NPM to gather information about available updates and then automati-
cally suggests changes to the dependency file of the repository.

5.1.2 Renovate

Renovate [23] is a bot that automatically updates dependencies in repositories by
creating pull requests that suggest changes to dependency files. bot can be configured
flexibly and supports a variety of package managers and programming languages.

5.1.3 Greenkeeper

Greenkeeper [24] has been a bot that focuses on updating NPM dependencies. The bot
has tracked changes in dependency files and automatically creates pull requests when
an update is available. In 2020, Greenkeeper has been bought out by Snyk and is not
available as an independent tool anymore.

5.1.4 Further Alternatives

Snyk-Bot

Snyk [25] is a provider of tools for security monitoring of “npm, Yarn, and Maven-
Central” [26] dependencies in software projects. The article [18] does not explicitly
classify Snyk Bot as a dependency management devbot. However, it mentions that
Snyk is a platform for open-source dependency management and that Snyk Bot is
a dependency vulnerability detection tool. In addition, the Snyk company bought
Greenkeeper in May 2020. Among other things, Snyk offers permanent scanning of
packages and their assessment and evaluation for vulnerabilities with the help of its
own «Vulnerability Database».

Pyup.io

Pyup.io [27] is a dependency management DevBot. Pyup.io monitors the dependencies
of Python packages and automatically updates them when new versions are available.
Pyup.io can automatically create pull requests to deploy dependency updates and
run tests to ensure that the updates do not cause problems. Pyup.io also provides a
security scanner that detects known vulnerabilities in Python package dependencies
and notifies users when updates are available.

Chapter 5. Literature overview and state of the art 18

Adrian Rall Bachelor Thesis

Sonartype Nexus

Another alternative is Sonartype Nexus [28]. It’s another Repository Manager system.
It again has a different scope of supported packages compared to the other systems. It
supports NPM, NuGet, and Docker packages but like all alternatives, submodules are
not part of the scope.

5.2 Limitations and problems

He et al. (2022) note some practices for avoiding or resolving update problems: “How-
ever, all these packages are mainly used as devDependencies (static typing, linters, and
module bundlers), which are typically only used for development but not in production.
[...] Dependabot’s frequent and massive updates to devDependencies may be the first
alarming signal of causing noise and notification fatigue to developers.” [29] Updating
packages and dependencies regularly is a necessary but also time-consuming task for
developers. DevBots such as Dependabot, Renovate, or Greenkeeper can remedy this
by creating automated pull requests for updated packages. However, the study by He
et al. (2022) points out that Dependabot “is effective in notifying developers to update
dependencies, but has several limitations in automating dependency updates and can
hardly reduce dependency management workload for developers.” [29]

One possible reason for developers’ reluctance to update dependencies could be the
added responsibility and effort, as He et al. also point out:
“Nonetheless, it requires not only substantial effort but also extra responsibility from
developers. Consequently, there is no surprise that many developers adhere to the
practice of ’if it ain’t broke, don’t fix it’ and the majority of existing software systems
still use outdated dependencies.” [29]

In addition, the frequent and massive updating of devDependencies by Dependabot
can lead to notification overload and fatigue for developers, as the need to update
devDependencies is controversial [3], [30]. He et al. (2021), citing the study by
Mirhosseini and Parnin [31], state that “only 32% of Greenkeeper PRs are merged
because developers become suspicious of whether a bot update will break their code
due to incompatibilities (i.e., update suspicion) and feel annoyed about the large
number of bot PRs (i.e., notification fatigue). Since then, many similar bots have
emerged, evolved, and gained high popularity, even knocking Greenkeeper out of
competition. However, it remains unknown to what extent these new bots can overcome
the two limitations of Greenkeeper identified by Mirhosseini and Parnin [31] in 2017.”
([29])

Another limitation of Greenkeeper mentioned in the study by Rombaut et al. (2023)
is that automatically resetting broken updates to an older version is not an effective
solution. (See [32])

“Reverting a broken dependency update to an older version, which is a potential
solution that requires the least overhead and is automatically attempted by Green-
keeper, turns out to not be an effective mechanism. Finally, we observe that 56% of the

Chapter 5. Literature overview and state of the art 19

Adrian Rall Bachelor Thesis

commits referenced by Greenkeeper issue reports only change the client’s dependency
specification file to resolve the issue.” ([32]) One reason for this is the disclaimer. If
problems arise due to automated and unauthorised operations, the companies offer-
ing the algorithm could be legally vulnerable. Another point is that DevBots and
Dependency Manager (like Maven or NuGet) are specialized for a limited amount of
package types and languages. The goal of the dependency update mechanism for the
future is universal updating, regardless of the programming language. For the time of
writing, the mechanism is intended to be applicable to NPM and NuGet packages and
Submodules, but an extension for other package sources like Docker or Unity is to be
made.

5.2.1 Companies experiences with Dependabot

The Digital Engineering program has already used Dependabot for testing purposes
on their Enterprise Server. In contrast to the publicly accessible github.com plat-
form, GitHub Enterprise Server (GHES) is a self-hosted version of GitHub. GHES
allows organizations to deploy and manage GitHub-like functionality on their own
servers to increase security, compliance, and control over their Git repositories. Un-
like GitHub.com, where GitHub is responsible for infrastructure and maintenance,
GHES is an on-premises installation run by the enterprises themselves (due to GDPR
restrictions, runners have to be hosted in Europe).

Differences in the operation of Dependabot have been observed when it has been
used to update dependencies in repositories on GitHub.com and GitHub Enterprise
Server. In particular, an increased error rate has been observed when using GHES.
The difference may lie in the different processing and operation of Dependabot on
repositories of GitHub.com compared to GHES. During the introduction of the GitHub
Enterprise Server, Dependabot was only usable for publicly accessible repositories.
It was not until June 2022 that an update to GHES was introduced, which made
Dependabot available for GHES as well. Nevertheless, the scope is still not the same
(Compare [33]).

Costs

In addition, parts of the programs are subject to a fee (see [34], [35]). Restricting use
to individual programmers on the basis of licenses significantly limits the scope of
use. Extending rights to all developers, on the other hand, may exceed the cost of
the existing dependency update mechanism. This is not in line with the objective of
reducing the costs of the dependency mechanism. An internal evaluation showed that
using Sonartype’s offering for «Sonartype Nexus» [28] would have cost the company
85,000€ per year. The functionality for updating dependencies is thereby included in a
larger functional package. However, it is not possible to separate out the individual
functions required from the overall package. This does not include maintenance costs
for the Enterprise Server (as shown in Table 4.1).

Chapter 5. Literature overview and state of the art 20

Adrian Rall Bachelor Thesis

5.3 Advantages of external bots

Despite all the problems Mirhosseini and Parnin pointed out in their study about
Greenkeeper, it has still found that “on average, projects that use pull request no-
tifications upgraded 1.6x as often as projects that did not use any tools.” [31] This
implies that even dependency management programs to which developers attribute
poor usability to have a production increase, result in an improved time-to-market. The
management systems are also widely used and each of them has a code community
forum to share ideas. (Compare [36], [37]) In addition, the external systems offer
functionalities that can only be replicated with great effort. For example, Snyk offers
its own Vulnerability Database, which can promptly draw attention to problems with
packages (see [38]). Another example is the Code Checker, which checks for common
security risks and critical errors during the upload process and can issue warnings.
(Compare [39]) Many of these management bots or systems can be used free of charge
to a certain extent.

5.4 Conclusion

While the presented DevBots offer valuable functionalities like the Code Checker, they
do not fulfill all the requirements of the company. To include in-house packages, these
tools need to be connected to a local dependency manager such as JFrog Artifactory
or Nexus. However, it is unclear if such an integration would meet all the company’s
requirements for the dependency update mechanism. Moreover, there are additional
costs and efforts involved in integrating and training local dependency managers.
Using different tools for different package types would increase the effort required to
manage dependencies from outside.

One crucial factor that external DevBots do not cover is the dependency management
of the submodules of Github. One publicly available Github Action for example can
update submodules but are hard to integrate into the company’s workflow [40] or are
no longer maintained [41].

Chapter 5. Literature overview and state of the art 21

Adrian Rall Bachelor Thesis

Chapter 6

Methodology

6.1 Purpose

The objective of the dependency update mechanism is to identify and keep NPM
packages, NuGet packages, and submodules up to date while making their information
easily accessible in a structured format. To maintain the efficiency of the format, only
necessary information is stored, which represents the smallest common denominator
of required information for unique identification, usage location, and corresponding
version. The mechanism should be open for extensions of any package and dependency
manager, for example, Maven packages, Docker images, or Gradle packages.

German et al. (2007) [42] describe the information requirements for managing «inter-
dependencies» between modules. In this paper, however, the scope of the required
information has been reduced and adapted. Information about dependencies is
determined dynamically based on the algorithm, not statically fixed.

A graph algorithm or graph representation was chosen to illustrate and resolve depen-
dencies. This decision was based on the current literature [42], [31], p. 32 [32], p. 3919
[11], [43]. A recursive search with subsequent topological sorting was chosen. For the
search algorithm part, a recursive depth-first search (pp. 603 [44], pp. 459 [45]) and a
recursive breadth-first search (pp. 594 [44], pp. 455 [45]) have been examined in more
detail.

6.2 Background information

In the following section, all relevant components for the concept of the new update
mechanism are explained.

6.2.1 NPM

The Node Package Manager (NPM) allows developers to create, publish, and install
reusable Node.js code modules (packages). It offers the possibility of quickly installing

22

Adrian Rall Bachelor Thesis

and managing third-party packages written in Javascript via the command line. An-
other way to search, find, and install NPM packages is the NPM registry. “The registry
is a large public database of JavaScript software and the meta-information surround-
ing it.” ([46]) NPM supports semantic versioning, which helps ensure compatibility
between packages. All packages used by a developer are defined in the so-called
“package.json” file.

6.2.2 NuGet

“Nuget is a free, open-source, package management tool for the .NET platform, C++,
and JavaScript. It was developed by Microsoft [...]. NuGet enables .NET developers to
easily find packages, including any dependencies, and manage them.” (p. 13 [47]) Both
open-source and enterprise versions are available for NuGet packages. Packages are
versioned using a semantic versioning scheme, which allows easy tracking of changes
and updates. Comparable to the NPM registry, all NuGet packages are hosted in the
NuGet Gallery.

6.2.3 Submodules

Python uses pip packages (PyPI), .NET uses NuGet packages, and JavaScript provides
NPM packages. However, other high-level languages do not necessarily have a native
package management system, for example, C or C++. With «Git submodules» this can
be overcome and code fragments can be exchanged in a similar way.

It is not advisable to manually embed a Git repository within another Git repository, as
this can lead to conflicts and version control management issues. Manually embedded
repositories usually remain untouched if updates are done.

Submodules, however, provide a way to manage Git repositories within another
repository without having to embed them manually. They offer benefits such as clean
separation of repository content, easy dependency management, and easy integration
of changes from external repositories. Updating submodules and setting them to
specific versions is a straightforward way to ensure the proper functionality of all
dependencies. Thus, all the necessary functionality for the dependency mechanism is
provided with submodules as well.

An important step is to have a main project that always points to the latest commit
SHA of a submodule. If this is not kept up to date, new clones of a repository point to
an outdated commit. If updates are executed from the clone in the submodule, then
these updates start from the outdated SHA state.

6.3 JSON format for relevant information

The relevant information of the packages and submodules will be recorded in a
structured “JavaScript Object Notation” (JSON) file. Figure 6.1 represents the structure.

Chapter 6. Methodology 23

Adrian Rall Bachelor Thesis

Figure 6.1: General JSON structure

JSON is a very lightweight and easy-to-read data format. It is very efficient in the use
of storage space and bandwidth since it is a text-based format without the need for a
complex structure. It is also very easy to parse and generate. Compared to databases,
JSON offers the advantage of easy portability and flexibility. It is very easy to transfer
JSON data between different systems and applications without requiring complex
database infrastructure. In addition, JSON does not require any special management
or administration like a database. (Compare [48]) The final format structure has been
determined by the contractor.

There is a corresponding division into «internal» and «external» origins. Only internal
packages and submodules can be considered when assessing their impact on the
functioning of the company. For NPM and NuGet packages, the same information
is collected. This is possible because they can provide the necessary information.
Submodules, for example, do not provide a versioning string according to the scheme
of semantic versioning.

Initially, basic information about the repository is collected:

• orgName: Name of the organization. In this case, each department has its

Chapter 6. Methodology 24

Adrian Rall Bachelor Thesis

own organization name. In the event of an expansion of the agile V-model
and networking with other departments, this information is needed for unique
naming.

• repoName: The name of the repository is stored.

• currentReleaseTag: The current release tag of the repository is documented. This
allows for tracing the current working version.

• license : The license is required to define under what conditions other individuals
may use, copy, or modify the repository.

• sha: To ensure unique identification, the SHA value of the repository is also
stored.

For the transitive packages (NPM and NuGet and in the future Maven and other), the
following information is required:

• project: NPM and NuGet packages can be used in multiple separate projects
within a repository.

• source: The associated source is needed to determine the origin (internal or
external).

• name: The name of the package is required for unique identification.

• currentVersion: The version of the package currently used is recorded.

For submodules, different information is available:

• name: The name of the submodule is collected for identification.

• path: The path is needed to specify the directory where the submodule is installed
in the main repository and can be found within the repository.

• url: The URL is needed for unique identification

• sha: The SHA can theoretically be used for unique identification and as a
replacement for the version number. In this case, since the name is already
recorded (and each original repository is assigned a unique name), the SHA
value serves as a replacement for the versioning string, as each commit has a
unique identification number.

Chapter 6. Methodology 25

Adrian Rall Bachelor Thesis

6.4 Directed acyclic graph

For the representation and processing of the dependencies, a recursive depth-first
search or breadth-first with topological sorting will be used. This requires an acyclic
graph. Based on this, an ordered update chronology is to be realized.

6.4.1 Definition

A graph G is a tuple (V, E), where V is a set of nodes, and E is the set of edges.
Multiple edges are not allowed, so only a subset of the Cartesian product V × E is
formed. However, each e ∈ E is now a tuple (a, b) with a, b ∈ V. "This definition,
however, allows for cyclic graphs." [45] If a directed graph contains cycles, that is, the
possibility to reach the same point again in the direction of an arrow (on a round trip),
then it is called cyclic. (Compare 6.2) It represents an arbitrary mathematical relation,
but not an order relation. If a directed graph does not contain cycles, it is called
acyclic. Mathematically, it represents a partial order. In object-oriented programming,
a polyhierarchy corresponds to a directed acyclic graph. (Compare [45])

6.4.2 Complexity

The following table lists the complexity of various operations for different representa-
tions of a graph. It holds that n = |V| and m = |E|.

Operation Edge List Node List Adjacency Matrix Adjacency List
Insert Edge O(1) O(n + m) O(1) O(1) / O(n)
Delete Edge O(m) O(n + m) O(1) O(1)
Insert Node O(1) O(1) O(nˆ2) O(1)
Delete Node O(m) O(n + m) O(nˆ2) O(n + m)

Table 6.1: Complexity of Graph perations ([45])
An adjacency list is used because it is estimated to be the more efficient solution in the
course of the application on a test repository. If the concept of the dependency update
mechanism is expanded, the efficiency and readability may decrease in favor of an
adjacency matrix.

While the mechanism is said to be designed for efficiency, it is not located in a
time-critical environment. Therefore, the exact specification of the complexity can be
neglected.

6.4.3 Depth-first Search

In the recursive depth-first search, starting from a starting node, all neighboring nodes
are accessed in sequence. The path of the first neighboring node, n1, is followed
until its end. Branches are remembered and recursively traversed to the end until
all possible paths that can be reached by n1 have been traversed. Then the paths of
the other neighboring nodes of the starting point, n2 - nn, are traversed in the same
manner (compare p. 603 [44], p. 459 [45]).

Chapter 6. Methodology 26

Adrian Rall Bachelor Thesis

Algorithm 1 DFS(G) from [45]

Require: Graph G
1: for each Node u ∈ V(G) do
2: color[u]← white; π[u]← null
3: end for
4: time← 0
5: for each Node u ∈ V(G) do
6: if color[u] = white then DFS-visit(u) fi
7: end for

6.4.4 Breadth-first search

The breadth-first search starts from a starting node s. All its direct neighboring nodes,
n1 - nn, are then visited. Each neighboring node in turn follows its corresponding
direct neighboring nodes. This process is repeated for each visited node until finally
all possible nodes have been reached (compare p. 594 [44], p. 455 [45])

Algorithm 2 BFS(G, s) from [45]

Require: Graph G, a start node s ∈ V[G]
1: for each Node u ∈ V(G)− s do
2: color[u]← white; d[u]← ∞; π[u]← null
3: end for
4: color[s]← grey; d[s]← null; π[s]← null
5: Q← emptyQueue; Q← enqueue(Q, s);
6: while ¬isEmpty(Q) do
7: u← f ront(Q);
8: for each v ∈ DestinationNodeOutgoingEdges(u) do
9: if color(v) = white then

10: color[v]← grey; d[v]← d[u] + 1;
11: π ← u; Q← enqueue(Q, v)
12: fi
13: od
14: dequeue(Q); color[u]← black
15: od

6.4.5 Cycle detection

The depth-first search and breadth-first search can only be performed on an acyclic
graph. A cycle occurs when a node that has already been visited is dependent on
another node that has already been visited.

Chapter 6. Methodology 27

Adrian Rall Bachelor Thesis

Figure 6.2: Cycle inside graph

6.4.6 Topological Sorting

“A topological sort of a dag G = (V, E) is a linear ordering of all its vertices such that if
G contains an edge (u, v), then u appears before v in the ordering.” ([44])

Algorithm 3 TOPOLOGICAL-SORT(G)

Require: Directed graph G
1: Call DFS(G) to compute finishing times v. f for each vertex v
2: As each vertex is finished, insert it onto a linked list
3: Return the linked list of vertices

6.5 Conclusion

The basic theory for the design of the new dependency update mechanism has been
explained. First, it has been described which information has to be prepared in what
way. Then the origin of the algorithm for the recursive depth-first search and breadth-
first with topological sorting has been demonstrated. This serves to understand the
concrete implementation and the motivations for individual decisions. Both algorithms
have been implemented. However, it turned out that the breadth-search is better suited
for the workflow. This is because more repositories can be triggered at the same time
without interfering with each other due to the order.
From the theory, two GitHub Actions have been designed that put the requirements
into reality. This is described in the following chapter.

Chapter 6. Methodology 28

Adrian Rall Bachelor Thesis

Chapter 7

Implementation

7.1 Description of the implemented solution

This implementation is part of an automated dependency update mechanism that
allows developers to keep certain packages and modules of their projects up to date by
automatically updating outdated packages / modules.
Two separate Github Actions have been implemented in TypeScript:

1. “Write2Inventory”: The task of the first action is to collect and archive the desired
information in a uniform JSON format.

2. “DependencyUpdate”: The second action uses the previously generated JSON
files to create a graph and topological sorting of the update order of all relevant
repositories.

GitHub Actions, an automation system, is a CI/CD solution integrated into GitHub.
Actions can be used to start and control automated software processes such as bug
management, project management, or code safety analysis. (Compare [49])

29

Adrian Rall Bachelor Thesis

7.2 Action No. 1: Write2Inventory

7.2.1 Purpose of the Action

The first action, Write2Inventory, collects basic information for each repository that is
to be considered, as shown in Figure 6.1. The code implements an algorithm to gather
information about NPM and NuGet packages as well as submodules for a specific
GitHub repository.

7.2.2 Code and functionality

The final output object has a defined structure and contains information about the
repository, internal and external NPM and NuGet packages, as well as internal and
external submodules. In addition, the strategy for updating packages is determined.
Finally, the output object is formatted as a JavaScript Object Notation (JSON) string
and then exported to a separate repository.

Collecting repository information

Figure 7.1: Sequence diagram of the central method

The following section will explain in detail the relevant methods (compare 7.1) for
gathering information:

findALLCSPROJmodules()

The purpose of this method is to find all files in a repository that end with “.csproj”,
including submodules. The method calls two git commands:

1. “git submodule update –init –recursive”: The main part of the command is
“git submodule update”. This section updates all submodules to the state of

Chapter 7. Implementation 30

Adrian Rall Bachelor Thesis

the current commit in the repository where it is included as a submodule. This
repository may be different from the original repository where the submodule
has been created (see Figure 7.2).

Figure 7.2: Integration submodule

The option “–init” is required to initialize the submodules. The entire method
is embedded in the GitHub Action Write2Inventory”, which temporarily clones
the respective repository where it is applied. If the option –init is missing,
the subdirectory for the submodule would be empty, requiring a separate
initialization of the submodules. With the option “–recursive”, submodules of
submodules are also recursively considered and included in the process of the
command.

2. “find . -name .csproj”: This command finds and lists all files with the
“.csproj” extension in a repository, including in submodules and subdirectories.

.
The return value of the method is ultimately a flat list of paths (relative to the working
directory where the code was executed) to the .csproj files found.

findNugetPackages()

The purpose of this method is to determine a list of all NuGet package sources used.

The command “dotnet nuget list”, called by the method, lists all configured NuGet
package sources in the directory. The option –format short reduces the output of
the command to the URL of the package sources. Additionally, it shows whether the
package source is enabled or disabled. Disabling a source means that NuGet will
ignore it and will not search for or download packages from it. The method returns a
list of URLs used as NuGet package sources for the .NET application.

getAllNuGetPackages()

The output of the two methods findALLCSPROJmodules and findNugetPackages
are used as input parameters in the method getAllNuGetPackages. The aim
of the method is to output a list of all NuGet packages considered as inter-
nal (“https://nuget.github.bhs-world.com/...”) or external (for example
“https://api.nuget.org/v3/index.js”).

Chapter 7. Implementation 31

Adrian Rall Bachelor Thesis

The method calls the .NET command “dotnet list $project package –source
$source” with the “project” and “source” parameters provided iteratively by using
the lists obtained from findALLCSPROJmodules and findNugetPackages. The output
objects contain:

• project (the name of the project that contains the package)
• source (the URL of the source from which the package was installed)
• name (the name of the package)
• currentVersion (the current version of the package)

of each package, which is then separated into internal and external package objects
based on a predefined list of sources (see above). If a package comes from a source
declared as internal, it is added to the list of internal packages, otherwise, it is defined
as an external package.

getAllNPMPackageInfo()

The purpose of the method is to collect desired attributes such as the name of the
project it is used in, the name of the package, the URL source, and the currently
used version of the NPM package across all NPM packages within a repository. The
package objects are then divided into external and internal package objects based on
a list of valid source URLs (starting with “@digitalengineering”, “@requipment”,
...). Internal means that the NPM package originates from the GHES itself. External
packages, on the other hand, are public and freely available packages (for example
“@actions/core”, “@actions/github”, ...).

First, the method calls the NPM command npm ls –depth=0 –json and extracts the
name of each package from its output, saving them in a list. Then, for each package
in the list, the method calls the getSingleNPMPackageInfo function to obtain more
detailed information about each package. The function returns an object of type
Packages, which includes the following fields:

• project (the name of the project that contains the package)
• source (the URL of the source from which the package was installed)
• name (the name of the package)
• currentVersion (the current version of the package)

.
Next, the Packages are divided into internal and external packages. The criterion for
separation is a list of valid source references (see above). If the source of a package is
found in the list of internal sources, the corresponding package is considered internal,
otherwise, it is considered an external NPM package.

getSubmodules()

The method getSubmodules() is used to read all submodules of a
repository. Based on a list of internal submodule URLs (for example
“https://github.bhs-world.com/...”), a distinction is made again between
submodules of internal or external origin. Internal submodules come from the
company’s GitHub Enterprise Server, while external submodules correspond to

Chapter 7. Implementation 32

Adrian Rall Bachelor Thesis

modules of external origin, such as from a publicly accessible repository.

The method first calls the git command git submodule status –recursive. The
command returns a list of all submodules of a repository. The –recursive option also
lists submodules in submodules recursively. Then, the desired data are extracted based
on the Submodule interface, which includes the following properties:

• name (the name of the project that contains the submodule)
• path (relative path of the submodule in the repository)
• url (full URL of the repository, along with the source information)
• sha (current unique SHA of the submodule)

.

Afterwards, the submodules that were found are divided into internal and external
submodule objects according to the list of internal submodules and are returned.

7.2.3 Conclusion

The collected data are stored in a separate JSON file for each repository in a central
GitHub repository (called “Inventory”) (see Figure 6.1). Each file is named after
the repository it refers to. In the end, the file structure gets filled with basic reposi-
tory information, information about each package, and each submodule inside the
repository.
An example output is provided in the Appendix A.3. The files build the basis for the
subsequent GitHub Action DependencyUpdate.

Chapter 7. Implementation 33

Adrian Rall Bachelor Thesis

7.3 Action No. 2: “DependencyUpdate”

7.3.1 Purpose of the Action

This GitHub Action reads all JSON files written to the Inventory and collects the
information to form a graph. By resolving the dependencies using a recursive depth-
first search and topological sorting, it creates an order in which the repositories should
be updated without triggering a conflict in the order.

7.3.2 Code and functionality

This action has two main tasks: After reading all JSON data from the central "Inventory"
repository, first, the respective dependencies are created, and then, they are evaluated,
resolved, and finally put in order based on a directed acyclic graph.

Collecting the dependencies

To create the dependencies, an abstract class DependencyType has been defined.
NpmDependency, NugetDependency and SubmoduleDependency inherit from this abstract
class and implement their specific getDependencies methods to extract the dependen-
cies from the JSON files. (See Figure 7.3)

Figure 7.3: General dependency type class

The class DependencyCollector iterates over all getDependencies. The
method getDependencies() of the DependencyCollector class creates a list of
DependencyType objects. These objects contain NpmDependency, NugetDependency, and
SubmoduleDependency. Then, the method calls the collectDependencies() method
and returns the result.

The three classes are instantiated in DependencyCollector and called by the
collectDependencies() method to finally return a list of dependency objects
containing all collected dependencies from the JSON objects.

This structure follows the Single Responsibility Principle, the Open-Closed Principle,
and the Dependency Inversion Principle of software development, coined by R. C.
Martin in 2000 (see [51]).

Chapter 7. Implementation 34

Adrian Rall Bachelor Thesis

getDependencies() of DependencyCollector now includes all dependencies. These
are then transformed into a map structure using getDependencyMap().

DependencyMap

A DependencyMap has been implemented to model incoming dependencies in a map
structure. The DependencyMap can be defined as a function f : A → B, where A is
the set of keys and B is the set of lists of dependencies. Each key ki from A is mapped
to a list li of dependencies from B, i.e. f (ki) = li.

The following example corresponds to the resolution of Figure 7.4 into a map:

DependencyMap: M = {
A→ [C, D, E, K],
B→ [E, F, G],
C→ [H],
D→ [I, J],
E→ [K],
F→ [L],
G→ [M, N],
H→ [O],
I→ [P],
J→ [P],
K→ [Q],
L→ [Q, R],
N→ [S],
O→ [P],
P→ [T, U],
Q→ [P, U],
R→ [U],
S→ [U]
}

Figure 7.4: Example graph

.

getDependencyMap() iterates over each dependency in the input list and adds it to the
DependencyMap. The key of the map is the name of the source repository, and the
value is a list of target repositories (see Algorithm 4). Only direct dependencies are
stored, no indirect/transitive dependencies. This corresponds to the recommendation
of Maven.org:

Chapter 7. Implementation 35

Adrian Rall Bachelor Thesis

“Although transitive dependencies can im-
plicitly include desired dependencies, it is
a good practice to explicitly specify the
dependencies your source code uses di-
rectly. This best practice proves its value
especially when the dependencies of your
project change their dependencies. For ex-
ample, assume that your project A specifies
a dependency on another project B, and
project B specifies a dependency on project
C. If you are directly using components in
project C, and you don’t specify project C
in your project A, it may cause build failure
when project B suddenly updates/removes
its dependency on project C.” ([50])

Table 7.1: Graph example for Maven
citation

The operations to add an element to the map or to append to a list have a time
complexity of O(1). Therefore, overall, getDependencyMap() has a time complexity of
O(m), where m is the number of dependencies in the input list.

Algorithm 4 Determination of the DependencyMap

1: procedure getDependencyMap(dependencies)
2: map← [] ▷ Initialize empty DependencyMap
3: for each dependency ∈ dependencies do
4: f rom← dependency. f rom ▷ Store source repository
5: to ← dependency.to ▷ Store target repository
6: if f rom ist kein Schlüssel in map then
7: map[f rom]← [] ▷ Initialize empty list for the source repository
8: end if
9: map[f rom].push(to) ▷ Add target repository to the list of dependencies

10: end for
11: return map ▷ Return DependencyMap
12: end procedure

reverseDependencyMap

One of the limitations of the getDependencyMap() function is that it only indicates
which dependencies are utilized by a given object. However, the dependencies them-
selves are unaware of the potential impact that updates may have on the objects that
utilize them. The reverseDependencyMap() function overcomes this limitation by indi-
cating which objects utilize a given dependency. It thus provides a reversed view of
the dependency map, converting the statement "Q utilizes K" to "K is utilized by Q".
The overall complexity of this function is O(n*m), where n is the number of modules
and m is the average number of dependencies per module.

Chapter 7. Implementation 36

Adrian Rall Bachelor Thesis

Table 7.2: Before reverseDependen-
cyMap()

Table 7.3: After reverseDependen-
cyMap()

topologicalSortDFSWithStart

The function topologicalSortDFSWithStart() takes the Map object from
reverseDependencyMap() as input.

1. Recursive depth-first search is used to traverse the dependency graph of a
package or module and collect the dependencies until all dependencies have
been captured.

2. The dependency graph is sorted into a list using topological sorting, which
ensures that dependencies are always updated before their dependents.

.
By performing these two steps, it is ensured that all dependencies of a package or
module are updated in the correct order to avoid compatibility issues and other errors.
This function has a linear time complexity of O(n + e), where n is the number of nodes
and e is the number of edges in the graph. In this case, n is the number of unique
repositories in the input list contained in the DependencyMap, and e is the number of
dependencies in the input list.
The Figure 7.4 shows the topologically sorted list. It should be mentioned that «K»
occurs only once in the list. In the current mechanism, «K» and «U» would have
appeared twice, «P» would have appeared three times (see chapter 4.3).

Chapter 7. Implementation 37

Adrian Rall Bachelor Thesis

Result would be the list:
[A,E,K,Q,D,J,I,C,H,O,P,U,T]

Table 7.4: Modification with chain re-
action

A check for cycles has been implemented. A recursive depth-first search with topo-
logical sorting can only be applied to a directed acyclic graph. If the check detects a
cycle, dependencies that trigger a cycle are resolved (see Figure 7.5). The algorithm
continues, but a warning is issued to the developer that a cycle was present and that
closer inspection and possibly human correction may be required.

Figure 7.5: Cycle detected and resolved

Chapter 7. Implementation 38

Adrian Rall Bachelor Thesis

Algorithm 5 Topological sorting with DFS with starting node

1: function topologicalSortDFSWithStart(dependencyMap, startNode)
2: sorted← [] ▷ Initialize empty list for sorted nodes
3: visited← [] ▷ Initialize empty set for visited nodes
4: reversedMap← reverseDependencyMap(dependencyMap) ▷ Reverse the

dependency map
5: function dfs(node) ▷ Perform depth-first search (DFS)
6: if node is in visited then ▷ If node has already been visited, return
7: return
8: end if
9: visited[node]← True ▷ Mark node as visited

10: dependencies← reversedMap[node] ▷ Get dependencies of the node
11: for each dependency in dependencies do
12: dfs(dependency) ▷ Perform DFS on each dependency
13: end for
14: sorted.push(node) ▷ Add node to the sorted list
15: return ▷ Return sorted list
16: end function
17: dfs(startNode) ▷ Perform DFS on the starting node
18: return sorted.reverse() ▷ Return the sorted list in reverse order
19: end function

topologicalSortBFSWithStart

The function topologicalSortBFSWithStart() takes the Map object from
reverseDependencyMap() as input.

1. Breadth-first search is used to traverse the dependency graph of a package or
module and identify the dependencies until all dependencies have been captured.

2. The dependency graph is sorted into a list using topological sorting, which
ensures that dependencies are always updated before their dependents.

. By performing these two steps, it is ensured that all dependencies of a package or
module are updated in the correct order to avoid compatibility issues and other errors.
This function has a linear time complexity of O(n + e), where n is the number of nodes
and e is the number of edges in the graph. In this case, n is the number of unique
repositories in the input list contained in the DependencyMap, and e is the number of
dependencies in the input list.
The Figure 7.5 shows the topologically sorted list. It should be mentioned that K”
occurs only once in the list. In the current mechanism, K” and U” would have appeared
twice, P” would have appeared four times (see chapter 4.3).

Chapter 7. Implementation 39

Adrian Rall Bachelor Thesis

Result would be the list:
[A,C,D,E,K,H,I,J,Q,O,P,U,T]

Table 7.5: Modification with chain re-
action

Algorithm 6 TopologicalSortBFS(dependencyMap, startNode)

Require: dependencyMap: A dictionary of nodes and their dependencies; startNode:
The starting node for sorting

1: Initialize an empty sorted list
2: Initialize an empty list of visited nodes
3: Initialize an empty queue
4: Reverse the dependencyMap to get a list of nodes that depend on it
5: Add the startNode to the queue
6: while Queue is not empty do
7: Remove the first element from the queue and name it "node"
8: if node has not been visited then
9: Mark node as visited

10: Get the dependencies of node from the reversed dependencyMap
11: for each dependency do
12: Add the dependency to the queue if it hasn’t been visited
13: end for
14: Add the node to the sorted list
15: end if
16: end while
17: return the sorted list

7.4 Challenges and limitations

7.4.1 Challenges and limitations of “Write2Inventory”

The mechanism should follow the Open-Closed Principle, which is "open for extension"
([51]). The extensibility of the JSON structure for Maven packages should be relatively

Chapter 7. Implementation 40

Adrian Rall Bachelor Thesis

unproblematic. Maven packages provide the same information as NPM and NuGet
packages, so they can be added following the same pattern. However, adding Docker
images may require new structures to ensure their unique identification and mapping
to their deployment locations and corresponding versions.

Another limitation that needs to be carefully considered in practical implementation
is the size of the repositories. Full (temporary) cloning and analysis of contents can
lead to performance problems. One possible solution is to use caching to reduce the
number of requests to the server.

7.4.2 Challenges and limitations of DependencyUpdate

The algorithm of recursive depth-first search with subsequent topological sorting
is designed for acyclic graphs. A check on the graph is already built-in, and the
resolution of cycles is also implemented. Depending on the complexity of the graph
structure, additional algorithms for cycle resolution, such as Tarjan’s algorithm
(compare [52], [53]) can be applied. It turned out, that the breadth-first search is
better suited for the mechanism. In contrast to the depth search, more repositories can
be addressed in parallel. The effects of dependency resolution have to be carefully
monitored by developers to ensure a smooth operation since specific edges (two or
more) were deliberately removed.

Another limitation is that currently only one starting node can be specified. Extending
the algorithm to multiple parallel starting positions is not yet implemented.

7.5 Conclusion

The GitHub Action DependencyUpdate uses the JSON files created by the first action,
Write2Inventory. The action contains three important methods, getDependencyMap(),
reverseDependencyMap() and topologicalSortBFSWithStart().

With getDependencyMap(), dependencies between the NPM packages, NuGet
packages and submodules and the repositories in which each of them are located.
reverseDependencyMap reverses the direction of the dependencies in a map, so that
the keys become values and vice versa.

The result is picked up by topologicalSortBFSWithStart(). Using the provided
dependency map, a recursive breadth-first search with topological sorting is applied
to a corresponding graph. The result of the topological sorting is the order of the
repositories for the update mechanism. The order ensures that repositories only need
to be updated once during a workflow.

This automated approach saves a lot of time and effort with respect to the reference
model, as multiple invocations of modules and repositories are avoided.

Chapter 7. Implementation 41

Adrian Rall Bachelor Thesis

Chapter 8

Experimental Results

8.1 Test data and methodology

The test results provided stable and safe values. The algorithm delivers the desired
values. Nevertheless, cases have emerged, especially in the area of misarrangements,
faulty overtagging paths, and fragmentary values, which still need to be addressed in
the future.

Figure 8.1: Testing pyramid, oriented by [54]

8.1.1 Test applications for Write2Inventory

In the first Action, Write2Inventory
• automated tests (unit tests)
• integration tests
• manual verification of results

were used to guarantee the smoothest possible behavior. “End-to-end tests” were not
implemented. This will be part of future work.

42

Adrian Rall Bachelor Thesis

Unit-Testing

Unit tests were created using Jest, a freely accessible test framework for JavaScript
applications. Specifically, the most important functions findCSPROJmodules(),
getDotnetSources(), getPackageInfo(), getAllPackageInfo(), and
getSubmodules() have been tested. Each of the functions was first examined
for its behavior when given empty or non-existent data that they require.

Then, the functions were called using test datasets, and their respective return values
have been checked. The return value of each function has been compared to the
expected value. Due to the rigid JSON structure that has to be adhered to, it was easy
to determine whether each method passed the test or not.

Integration Testing

An integration test has been created using Jest. Unit tests check the behavior of
individual components, in this case, the most important methods of the GitHub Action.
The integration test aims at examining the interaction of all methods and identifying
any potential errors.
The main focus of the integration test has been to verify whether the data can be
correctly read and processed from a Git repository. Specifically, the assignment of
internal and external NPM packages has been checked.
For the integration test, a temporary directory structure has been created to prevent
changes to the existing directory structure. A repository has been cloned into this
directory, and a temporary package.json file has been created, in which the relevant
dependencies have been installed. Then the method getAllPackageInfo() has been
applied, and it has been verified whether the allocation of the tested package was
correct. In contrast to the unit tests for the method getAllPackageInfo(), its behavior
was tested in interaction with real Github repositories.

8.1.2 Test applications for “DependencyUpdate”

Only unit tests and manual comparisons were carried out for this action. In-
tegration tests and E2E tests will be part of future work. In addition,
only the main methods reversedMap(), topologicalSortDFSWithStart(), and
topologicalSortBFSWithStart() were subjected to several tests.
The methods were each fed with data records. Among other things, cycles, empty lists,
and multiple referencing were tested.

8.2 Analysis and discussion of the results

Manual tests were passed to the functions for a faster run-through of branching
scenarios. Nevertheless, safeguarding through unit tests was applied. Figure 8.2 shows
the output on the output in the GitHub repository.

Chapter 8. Experimental Results 43

Adrian Rall Bachelor Thesis

Figure 8.2: Example of a manual test

Not all unit and integration tests were completed successfully. Whether this is due
to incorrect information and incorrectly expressed expected values within the test
implementation or due to the flawed nature of the methods needs to be explored in
more detail in future work (compare Figure 8.3).

Figure 8.3: Example of a manual test

Chapter 8. Experimental Results 44

Adrian Rall Bachelor Thesis

Chapter 9

Summary and future work

9.1 Summary of the results

A concept for improving an existing dependency update mechanism was designed and
implemented. Previously, the current state of the art was addressed and no way was
found to achieve the same effect. Third-party solutions that have been found are either
beyond the monetary scope and / or are limited in their mode of operation, in relation
to the requirements of the BHS. Initial tests indicate that an increase in efficiency, and
thus an increased monetary benefit, can be achieved through the newly implemented
mechanism.
A survey has been sent to two departments. The purpose was to get a quantitative
picture of the current technical status within the company. In addition to the literature
research, the results have formed a further key element for the conception of the update
mechanism.
The environmental structure in which the mechanism is incorporated (an internally
developed and used agile v-model) was examined and its functioning has been con-
firmed. Found models of a similar nature have been found and compared with the
internal model. It has been proven that the problems that occur are well handled by a
systematic management and the management agenda.
In the end, an acyclic graph with breadth-first search and topological sorting is the
key element for a successful replacement of the old dependency update mechanism.
The structure of the agile v-model, together with the dependency update mechanism
can be exported to other departments. The export of the agile v-model will with
its dependency update mechanism ensure faster assimilation of the less digitalized
departments to the highly networked and digitalized way of dealing, in line with the
Industry 4.0 agenda of BHS.

9.2 Future work

The dependency update mechanism has been implemented with two GitHub Actions,
written in TypeScript.
In order to fully integrate the update process, it is necessary to implement a third
Github Action and integrate all three actions into the overall process (see A.1). Addi-

45

Adrian Rall Bachelor Thesis

tional test scenarios with a more complex structure can also be added to improve the
safety and reliability of the function.
One potential area for future research could be exploring the optimization of the
Depth-First-Search algorithm using the Depth-First Discovery Algorithm developed
by Zhou and Müller (2003). This approach could potentially reduce resource and
time consumption as complexity increases [55]. Then it could be compared with the
Breadth-first search again.
Additionally, it may be worth considering the integration of aspects from aspect orien-
tation into the agile V-model. While the agile V-model incorporates concepts of object
orientation, aspect orientation is considered to be an extension of this approach [56].
This could potentially lead to further improvements in the efficiency and effectiveness
of the development process in the company.

Chapter 9. Summary and future work 46

Adrian Rall Bachelor Thesis

Bibliography

[1] “IT-Fachkräftemangel in Unternehmen in Deutschland 2020,” Statista.
https://de.statista.com/statistik/daten/studie/795219/umfrage/it-
%20fachkraeftemangel-in-unternehmen-in-deutschland/ (accessed Apr. 02,
2023).

[2] “Infografik: Informatiker dringend gesucht,” Statista Infografiken.
https://de.statista.com/infografik/20030/fachkraeftemangel-in-mint-berufen
(accessed Apr. 02, 2023).

[3] R. G. Kula, D. M. German, A. Ouni, T. Ishio, and K. Inoue, “Do developers update
their library dependencies?,” Empirical Software Engineering, vol. 23, no. 1, pp.
384–417, May 2017, doi: https://doi.org/10.1007/s10664-017-9521-5.

[4] C. Bogart, C. Kästner, and J. D. Herbsleb, “When It Breaks, It Breaks: How
Ecosystem Developers Reason about the Stability of Dependencies,” Automated
Software Engineering, Nov. 2015, doi: https://doi.org/10.1109/asew.2015.21.

[5] “Die Lage der IT-Sicherheit in Deutschland,” Bundesamt für Sicher-
heit in der Informationstechnik. https://www.bsi.bund.de/DE/Service-
Navi/Publikationen/Lagebericht/lagebericht_node.html.

[6] S. Bier, B. Fajardo, O. Ezeadum, G. Guzman, K. Z. Sultana, and V.
Anu, “Mitigating Remote Code Execution Vulnerabilities: A Study on
Tomcat and Android Security Updates,” IEEE Xplore, Apr. 01, 2021.
https://ieeexplore.ieee.org/abstract/document/9422666.

[7] “BHS Corrugated – Company,” www.bhs-world.com. https://www.bhs-
world.com/en/company (accessed Apr. 16, 2023).

[8] “Facts and Figures,” www.bhs-world.com. https://www.bhs-
world.com/en/company/facts-and-figures (accessed Apr. 16, 2023).

[9] “Study: German Industry 4.0 Index 2022,” Staufen.
https://en.staufen.ag/insights/studies-and-whitepapers/study-german-
industry-4-0-index-2022/ (accessed Apr. 20, 2023).

[10] A. Himme, "Gütekriterien der Messung: Reliabilität, Validität und Generalisierbarkeit".
In: Albers, S., Klapper, D., Konradt, U., Walter, A., Wolf, J. (eds) Methodik der
empirischen Forschung. Gabler Verlag, Wiesbaden. https://doi.org/10.1007/978-3-
322-96406-9_31. (2009).

[11] M. Shahin, M. A. Babar und L. Zhu, „Continuous Integration, Delivery and
Deployment: A Systematic Review on Approaches, Tools, Challenges and
Practices“, IEEE Access, Bd. 5, S. 3909–3943, März 2017, doi: 10.1109/ac-
cess.2017.2685629.

[12] Atlassian, “Continuous integration vs. continuous delivery vs. continu-

47

Adrian Rall Bachelor Thesis

ous deployment,” Atlassian, 2019. https://www.atlassian.com/continuous-
delivery/principles/continuous-integration-vs-delivery-vs-deployment (accessed
Apr. 22, 2023).

[13] Ludewig, J. and Lichter, H., "Software Engineering: Grundlagen, Menschen, Prozesse,
Techniken," dpunkt.verlag, 3rd ed., 2013.

[14] B. Boehm, “Managing software productivity and reuse,” Computer, vol. 32, no. 9,
pp. 111–113, 1999, doi: https://doi.org/10.1109/2.789755.

[15] M. Griss, T. Biggerstaff, S. Henry, I. Jacobson, D. Lea, and W. Tracz, “Systematic
software reuse (panel session),” ACM SIGPLAN Notices, vol. 30, no. 10, pp. 281–282,
Oct. 1995, doi: https://doi.org/10.1145/217839.217867.

[16] Maria Teresa Baldassarre, A. M. Bianchi, D. Caivano, and G. Visaggio, “An
industrial case study on reuse oriented development,” International Conference on
Software Maintenance, Sep. 2005, doi: https://doi.org/10.1109/icsm.2005.20.

[17] A. Tomer, L. Goldin, T. Kuflik, E. Kimchi, and S. R. Schach, “Evaluating software
reuse alternatives: a model and its application to an industrial case study,” IEEE
Transactions on Software Engineering, vol. 30, no. 9, pp. 601–612, Sep. 2004, doi:
https://doi.org/10.1109/tse.2004.50.

[18] L. Erlenhov, F. G. de Oliveira Neto, and P. Leitner, “Dependency management
bots in open-source systems—prevalence and adoption,” PeerJ Computer Science,
vol. 8, p. e849, Mar. 2022, doi: https://doi.org/10.7717/peerj-cs.849.

[19] L. Erlenhov, F. Gomes, and P. Leitner, “An empirical study of bots in software de-
velopment: characteristics and challenges from a practitioner’s perspective,” arXiv
(Cornell University), Nov. 2020, doi: https://doi.org/10.1145/3368089.3409680.

[20] L. Erlenhov, F. Gomes de Oliveira Neto, R. Scandariato, and P. Leitner,
“Current and Future Bots in Software Development,” 2019 IEEE/ACM 1st In-
ternational Workshop on Bots in Software Engineering (BotSE), May 2019, doi:
https://doi.org/10.1109/botse.2019.00009.

[21] M. Wessel et al., “The power of bots: Characterizing and understanding bots in
oss projects,” Proceedings of the ACM on Human-Computer Interaction, vol. 2, no.
CSCW, pp. 1–19, 2018.

[22] “Dependabot,” GitHub. https://github.com/dependabot (accessed Apr. 5, 2023)
[23] “Mend Renovate: Automated Dependency Updates,” Mend.

https://www.mend.io/renovate/ (accessed Apr. 27, 2023).
[24] “Greenkeeper | Automate your npm dependency management,” greenkeeper.io.

https://greenkeeper.io/ (accessed Apr. 27, 2023).
[25] “Snyk | Developer security | Develop fast. Stay secure.,” nyk.io. https://snyk.io/

(accessed Apr. 5, 2023)
[26] “Upgrading dependencies with automatic PRs - Snyk User Docs,” Snyk.io,

2023. https://docs.snyk.io/scan-application-code/snyk-open-source/open-
source-basics/upgrading-dependencies-with-automatic-prs (accessed Apr. 27,
2023).

[27] “// docs - What is the pyup bot?,” pyup.io. https://pyup.io/docs/bot/what-is-
pyup-bot/ (accessed Apr. 28, 2023).

[28] “Sonatype Nexus Repository - Binary Artifact Management | Sonatype,”
www.sonatype.com. https://www.sonatype.com/products/sonatype-nexus-

BIBLIOGRAPHY 48

Adrian Rall Bachelor Thesis

repository (accessed Apr. 20, 2023).
[29] R. He, H. He, Y. Zhang, and M. Zhou, “Automating Dependency Updates in

Practice: An Exploratory Study on GitHub Dependabot,” arXiv (Cornell University),
Jun. 2022, doi: https://doi.org/10.48550/arxiv.2206.07230.

[30] “for npm security alerts, ‘devDependencies‘ should be ignored by de-
fault or configurable · Issue 4146 · dependabot/dependabot-core,” GitHub.
https://github.com/dependabot/dependabot-core/issues/4146 (accessed Apr.
23, 2023).

[31] Samim Mirhosseini and C. Parnin, “Can automated pull requests encourage
software developers to upgrade out-of-date dependencies?,” Automated Software
Engineering, Oct. 2017, doi: https://doi.org/10.1109/ase.2017.8115621.

[32] B. Rombaut, F. R. Cogo, B. Adams, and A. E. Hassan, “There’s no such thing
as a free lunch: Lessons learned from exploring the overhead introduced by the
Greenkeeper dependency bot in npm,” ACM Transactions on Software Engineering
and Methodology, Apr. 2022, doi: https://doi.org/10.1145/3522587.

[33] V. Fawcett, “Dependabot Updates hit GA in GHES,” The GitHub Blog, Jun. 09, 2022.
https://github.blog/2022-06-09-dependabot-updates-hit-ga-in-ghes/ (accessed
Mar. 27, 2023).

[34] “Plans,” Snyk. https://snyk.io/de/plans/ (accessed Apr. 27, 2023).
[35] Pricing | The JFrog Software Supply Chain Platform,” JFrog.

https://jfrog.com/pricing (accessed Apr. 27, 2023).
[36] “Community,” Snyk. https://snyk.io/community/ (accessed Apr. 27, 2023).
[37] “Issues · dependabot/dependabot-core,” GitHub.

https://github.com/dependabot/dependabot-core/issues (accessed Apr.
27, 2023).

[38] “Snyk Vulnerability Database | Snyk,” Find detailed information and remediation
guidance for vulnerabilities. https://security.snyk.io (accessed Apr. 27, 2023).

[39] “Code Checker | Free Code Security Tool Powered by AI,” Snyk.
https://snyk.io/code-checker/ (accessed Apr. 27, 2023).

[40] “GitHub Action Submodule Updates - GitHub Marketplace,” GitHub.
https://github.com/marketplace/actions/github-action-submodule-updates (ac-
cessed Apr. 22, 2023).

[41] “Checkout submodules - GitHub Marketplace,” GitHub.
https://github.com/marketplace/actions/checkout-submodules (accessed
Apr. 22, 2023).

[42] . M. German, J. M. Gonzalez-Barahona, and G. Robles, "A model to understand the
building and running inter-dependencies of software," in 14th WorkingConference
on Reverse Engineering (WCRE 2007), Oct. 2007, pp. 140-149.

[43] J. Hejderup, Arie van Deursen, and Georgios Gousios, “Software ecosystem
call graph for dependency management,” International Conference on Software
Engineering, May 2018, doi: https://doi.org/10.1145/3183399.3183417.

[44] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,
third edition. MIT Press, 2009.

[45] G. Saake and K.-U. Sattler, Algorithmen und Datenstrukturen, fifth edition.
dpunkt.verlag, 2014.

BIBLIOGRAPHY 49

Adrian Rall Bachelor Thesis

[46] "“About npm | npm Docs,” docs.npmjs.com. https://docs.npmjs.com/about-npm
(accessed Apr. 25, 2023).

[47] Maarten Balliauw and X. Decoster, Pro NuGet. Second edition. Apress, 2014.
[48] P. Bourhis, J. L. Reutter, F. Suárez, and D. Vrgoč, “JSON: Data model, Query

languages and Schema specification,” Proceedings of the ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, vol. Part F127745, pp. 123–135,
2017, doi: https://doi.org/10.1145/3034786.3056120.

[49] Lois-Guillaume Morand, "Github Action - A practical guide," Packt Publishing,
Birmingham, UK, 29-07-2022.

[50] B. Porter Trygve, “Maven – Introduction to
the Dependency Mechanism,” Apache.org, 2013.
https://maven.apache.org/guides/introduction/introduction-to-dependency-
mechanism.html (accessed Apr. 25, 2023).

[51] MARTIN, R. C. "Design principles and design patterns." Object Mentor, vol. 1, no.
34, 2000, pp. 597.

[52] R. Tarjan, "Depth-first search and linear graph algorithms," SIAM Journal on
Computing, vol. 1, no. 2, pp. 146-160, 1972.

[53] E. Nuutila and E. Soisalon-Soininen, "On finding the strongly connected compo-
nents in a directed graph," Information Processing Letters, vol. 49, no. 1, pp. 9-14,
1994.

[54] “What is Testing Pyramid?,” www.headspin.io. https://www.headspin.io/blog/the-
testing-pyramid-simplified-for-one-and-all

[55] J. Zhou and M. Müller, "Depth-first discovery algorithm for incremental topologi-
cal sorting of directed acyclic graphs," Information Processing Letters, vol. 88, no. 4,
pp. 195-200, 2003.

[56] J. Goll and J. Goll, "Systementwurf bei aspektorientierter Programmierung. Meth-
oden und Architekturen der Softwaretechnik," in Proceedings of the 10th Workshop
Software-Reengineering (WSR), Bad Honnef, Germany, 2011, pp. 885-900.

BIBLIOGRAPHY 50

Adrian Rall Bachelor Thesis

List of Figures

2.1 Bhs corporate statistics . 3

3.1 7-point Likert scale . 8

4.1 Development of versions and variants p. 555 [13] 11
4.2 agile V-Modell of ’DigitalEngineering’ department 12
4.3 model for reuse by [17] . 13
4.4 abstraction of old mechanism . 15

6.1 General JSON structure . 24
6.2 Cycle inside graph . 28

7.1 Sequence diagram of the central method 30
7.2 Integration submodule . 31
7.3 General dependency type class . 34
7.4 Example graph . 35
7.5 Cycle detected and resolved . 38

8.1 Testing pyramid, oriented by [54] . 42
8.2 Example of a manual test . 44
8.3 Example of a manual test . 44

A.1 Complete workflow . 58

51

Adrian Rall Bachelor Thesis

List of Tables

4.1 Cost comparison for different savings . 15

6.1 Complexity of Graph perations ([45]) . 26

7.1 Graph example for Maven citation . 36
7.2 Before reverseDependencyMap() . 37
7.3 After reverseDependencyMap() . 37
7.4 Modification with chain reaction . 38
7.5 Modification with chain reaction . 40

A.1 List of survey questions and their corresponding text. 54

52

Adrian Rall Bachelor Thesis

Appendix A

Rohdaten

A.1 Statistical methods

Definition A.1.1 (Shapiro-Wilk-Test) To check whether certain data is normally distributed,
the Shapiro-Wilk test was performed. The test checks whether a sample is drawn from a normal
distribution.
Definition A.1.2 (Pearson-Test) The Pearson Chi-Square test tests whether there is a re-
lationship between two categorical variables. The observed frequencies are compared with
theoretically expected frequencies. Afterwards, the strength and direction of the relationship are
determined.
Definition A.1.3 (Spearman-Rho) The Spearman rank correlation analysis calculates the
linear relationship between two at least ordinal-scaled variables. Since the relationship between
two variables is always being investigated, it is referred to as a "bivariate relationship".
Definition A.1.4 (Phi-Koeffizient) The Phi coefficient (also called Phi correlation coefficient)
is a measure of the strength of the relationship between two dichotomous variables. The Phi
coefficient has a range of values from -1 to 1, where a value of 0 means that there is no association
between the variables, a value of 1 means a perfect positive association, and a value of -1 means
a perfect negative association.
Definition A.1.5 (Cramer V) Cramer’s V is an extension of the Phi coefficient for tables with
more than two categories per variable. It measures the strength of the relationship between two
variables in a cross table with more than two categories per variable. The value of Cramer’s V
ranges from 0 to 1, where a value of 0 means that there is no association and a value of 1 means
a perfect association.

A.2 Statistical evaluation of the questionnaire

Coding of the questions

The questions are coded according to this scheme:

53

Adrian Rall Bachelor Thesis

Code Question
F10 What overall ’Issue Types’ do you use? (e.g. fea-

ture/bug/documentation/refactoring)
F11 What is your typical pull/push cycle from your local

repository to GitHub?
F12 How often does your Code get merged to the MAIN

branch (on average)?
F13 When connecting libraries (or similar external code

fragments) to your program what type of version con-
trol are you most likely to use?

F15 How much do you agree with the following statement?
F15_3 I create simple but meaningful comments

F15_13 Most of my Classes have only one responsibility
Table A.1: List of survey questions and their corresponding text.

A.2.1 Question (F10) Push-Pull-cycles

For the distribution with 12 participants and categories 1-8, the calculation of the
Shapiro-Wilk test (p = .013 < .05) showed that there is no normal distribution. Due to
the non-normal distribution and the low number of observations in some categories,
statistical tests are not informative. However, there appears to be a clear preference for
a “daily multiple push-pull cycle” among the participants.

Question (F11) Merge-To-Main-cycles

The calculation of the Shapiro-Wilk test (p = .013 < .05) indicated that the distribution
is not normal. As the distribution is not normally distributed and the number of
observations in some categories is very small, statistical tests are not meaningful. The
comments indicate that the number of merge operations to the main codebase varies
depending on the situation, but more than half of the participants perform at least one
merge from other branches to the main codebase once a week. This suggests that other
branches are also used and the main codebase is not the sole working branch
Spearman-Rho Korrelation (F11 und F12) -> Abbildung X zeigt, dass die Korrelation
zwischen F11 und F12 bei rs = .643 liegt. Der p-Wert beträgt .284. Somit ist die
Korrelation statistisch nicht signifikant (p < .05).

F10 and F13

As can be seen in Figure X, both Cramer’s V (.676) and Phi (.955) are significant (both
p < .001). Since the values are above .50, a very strong association is assumed.

F15

For F15, participants were asked about their personal assessment of their implementa-
tion of object-oriented principles. The questions could be answered on a scale from
"not at all" to "Agree completely" (1-7). There are six questions of interest in this regard.

Chapter A. Rohdaten 54

Adrian Rall Bachelor Thesis

A Pearson correlation table was created. Only F15_9 and F15_10 are not significantly
correlated (N = 14, p = .054 > .05). All other combinations show a significant strong
association. Due to non-responses to questions, missing answers were supplemented
with the respective average of the question to maintain a consistent number of votes.

Chapter A. Rohdaten 55

Adrian Rall Bachelor Thesis

A.3 Example output of Write2Inventory

{
"repository": {

"orgName": "DigitalEngineering",
"repoName": "DigitalEngineering/DE_ID_AC_Dependencies2Inventory",
"currentReleaseTag": "v0.0.16",
"license": "MIT License",
"sha": "43b9c2b7cbe36d97b6e61a6361f39df0e2f8dd8b"

},
"InternNpmPackages": [

{
"project": "@digitalengineering/de_id_ac_dependencies2inventory/Testanwendung",
"source": "https://npm.github.bhs-world.com/download/@digitalengineering/...",
"name": "@digitalengineering/de_id_np_installdependencies",
"currentVersion": "0.6.2",

}
],
"ExternNpmPackages": [

{
"project": "@digitalengineering/de_id_ac_dependencies2inventory",
"source": "https://registry.npmjs.org/@actions/core/-/core-1.10.0.tgz"
"name": "@actions/core",
"currentVersion": "1.10.0",

},
...

],
"InternNugetPackages": [

{
"project": "@digitalengineering/de_id_ac_dependencies2inventory/Blazor/...",
"source": "https://nuget.github.bhs-world.com/digitalengineering/...",
"name": "Bhs.Design",
"currentVersion": "2.5.3",

}
],
"ExternNugetPackages": [

{
"project": "@digitalengineering/de_id_ac_dependencies2inventory/Blazor/...",
"source": "https://api.nuget.org/v3/index.json",
"name": "Microsoft.EntityFrameworkCore.SqlServer",
"currentVersion": "1.10.0",

}
],
"InternSubmodules": [

{

Chapter A. Rohdaten 56

Adrian Rall Bachelor Thesis

"name": "DE_TP_Documentation",
"url": "docs/DE_TP_Documentation"
"sha": "bbe00b931dfe89878a2175f8f3737e60888bf1aa",

}
],
"ExternSubmodules": [],
"updateStrategy": "MINOR"

}

Chapter A. Rohdaten 57

Adrian Rall Bachelor Thesis

A.4 Whole workflow

Figure A.1: Complete workflow

Chapter A. Rohdaten 58

	Context
	Motivation
	Context of this thesis
	Objective

	BHS Corrugated
	Introduction of the company
	BoxPlant 2025 - upgrade as a service
	iCorr - flagship for digitalization
	Conclusion

	Questionnaire
	Quality criteria
	Hypotheses
	Results questionnaire
	Conclusion

	Usage and embedding
	Integration into the company
	CI/CD
	Agile V-model

	Old Dependency-Update mechanism
	Background of the Old Mechanism
	Abstract functioning of the old mechanism

	Weaknesses and limitations of the old mechanism
	Cost savings with improved dependency update mechanism
	Criticism of the old mechanism
	Benefits due to the mechanism

	Literature overview and state of the art
	DevBots
	Dependabot
	Renovate
	Greenkeeper
	Further Alternatives

	Limitations and problems
	Companies experiences with Dependabot

	Advantages of external bots
	Conclusion

	Methodology
	Purpose
	Background information
	NPM
	NuGet
	Submodules

	JSON format for relevant information
	Directed acyclic graph
	Definition
	Complexity
	Depth-first Search
	Breadth-first search
	Cycle detection
	Topological Sorting

	Conclusion

	Implementation
	Description of the implemented solution
	Action No. 1: Write2Inventory
	Purpose of the Action
	Code and functionality
	Conclusion

	Action No. 2: ``DependencyUpdate''
	Purpose of the Action
	Code and functionality

	Challenges and limitations
	Challenges and limitations of ``Write2Inventory''
	Challenges and limitations of DependencyUpdate

	Conclusion

	Experimental Results
	Test data and methodology
	Test applications for Write2Inventory
	Test applications for ``DependencyUpdate''

	Analysis and discussion of the results

	Summary and future work
	Summary of the results
	Future work

	Literaturverzeichnis
	Abbildungsverzeichnis
	Tabellenverzeichnis
	Rohdaten
	Statistical methods
	Statistical evaluation of the questionnaire
	Question (F10) Push-Pull-cycles

	Example output of Write2Inventory
	Whole workflow

