
Ostbayerische Technische Hochschule Amberg-Weiden
Fakultät Elektrotechnik, Medien und Informatik

Studiengang Medieninformatik

Bachelorarbeit

von

Eni Veshi

Erweiterung eines webbasierten Zeiterfassungssytems um
die Fähigkeiten einer Progressive Web App und eines

integrierten Video Streamings

Extension of a web-based time recording system with the
capabilities of a progressive web app and integrated video

streaming

Ostbayerische Technische Hochschule Amberg-Weiden
Fakultät Elektrotechnik, Medien und Informatik

Studiengang Medieninformatik

Bachelorarbeit

von

Eni Veshi

Erweiterung eines webbasierten Zeiterfassungssytems um
die Fähigkeiten einer Progressive Web App und eines

integrierten Video Streamings

Extension of a web-based time recording system with the
capabilities of a progressive web app and integrated video

streaming

Bearbeitungszeitraum: von 02. November 2021
bis 31. März 2022

1. Prüfer: Prof. Dr.-Ing Christoph Neumann

2. Prüfer: Prof. Dr. Dieter Meiller

Ostbayerische Technische Hochschule Amberg-Weiden
Fakultät Elektrotechnik, Medien und Informatik

Bestätigung gemäß § 12 APO

Name und Vorname
der Studentin/des Studenten: Veshi, Eni

Studiengang: Medieninformatik

Ich bestätige, dass ich die Bachelorarbeit mit dem Titel:

Erweiterung eines webbasierten Zeiterfassungssytems um die Fähigkeiten einer
Progressive Web App und eines integrierten Video Streamings

selbständig verfasst, noch nicht anderweitig für Prüfungszwecke vorgelegt, keine
anderen als die angegebenen Quellen oder Hilfsmittel benützt sowie wörtliche und
sinngemäße Zitate als solche gekennzeichnet habe.

Datum: 26th April 2023

Unterschrift:

Ostbayerische Technische Hochschule Amberg-Weiden
Fakultät Elektrotechnik, Medien und Informatik

Bachelorarbeit Zusammenfassung

Studentin/Student (Name, Vorname): Veshi, Eni
Studiengang: Medieninformatik
Aufgabensteller, Professor: Prof. Dr.-Ing Christoph Neumann
Ausgabedatum: 02. November 2021 Abgabedatum: 31. März 2022

Title:

Erweiterung eines webbasierten Zeiterfassungssytems um die Fähigkeiten einer
Progressive Web App und eines integrierten Video Streamings

Zusammenfassung:

Diese Bachelorarbeit präsentiert die Erweiterung eines webbasierten Zeiterfassungssys-
tems namens Crew Active mit den Fähigkeiten einer Progressiven Web App und integ-
riertem Video-Streaming unter Verwendung der WebRTC-Technologie. Das Hauptziel
des Projekts besteht darin, das bestehende System durch die Integration zusätzlicher
Funktionen und Möglichkeiten zu verbessern. Die Architektur der Progressiven Web
App ermöglicht es dem System, auch im Offline-Modus verwendet zu werden und
Benutzern einen unterbrechungsfreien Zugriff auf ihre Zeitmanagementdaten zu bi-
eten. Die Video-Streaming-Funktionalität ermöglicht Echtzeitkommunikation und
Zusammenarbeit. Die Arbeit beschreibt und diskutiert den Entwicklungsprozess,
technische Herausforderungen und die Bewertung des Systems. Die Ergebnisse zeigen,
dass das erweiterte Crew Active-System eine bessere Möglichkeit zur Zeiterfassung bi-
etet als herkömmliche webbasierte Zeiterfassungssysteme, da es benutzerfreundlicher
ist und mehr Funktionen bietet. Die Arbeit schließt mit Vorschlägen für zukünftige
Verbesserungen.

Schlüsselwörter: Bachelorarbeit, Erweiterung, webbasiertes Zeiterfassungssystem,
Crew Active, Progressive Web App, WebRTC-Technologie, zusätzliche Funktionen,
Offline-Modus, Video-Streaming, Echtzeitkommunikation, Zusammenarbeit, Entwicklung-
sprozess, technische Herausforderungen, Bewertung, Zeitmanagement, zukünftige
Verbesserungen.

Eni Veshi Bachelorarbeit

Summary:

This bachelor thesis presents the extension of a web-based time recording system
called Crew Active with the capabilities of a Progressive Web App and integrated
video streaming using WebRTC technology. The project’s primary objective is to
extend the existing system by incorporating additional features and functionalities.
The Progressive Web App architecture allows the system to be also used in offline
mode, providing users with uninterrupted access to their time management data. The
video streaming functionality enables real-time communication and collaboration. The
thesis describes and discusses the development process, technical challenges, and
evaluation of the system. The results show that the extended Crew Active system is a
better way to manage time than traditional web-based time recording systems because
it is easier to use and has more features. The thesis concludes with suggestions for
future improvements.

Keywords: bachelor thesis, extension, web-based time recording system, Crew Active,
Progressive Web App, WebRTC technology, additional features, offline mode, video
streaming, real-time communication, collaboration, development process, technical
challenges, evaluation, time management, future improvements

v

Eni Veshi Bachelorarbeit

Contents

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 1
1.3 Objective of the bachelor thesis . 2

2 Literature Review 3
2.1 Web Application . 4
2.2 Single Page Application . 4
2.3 Exploring React: Components, Performance, and State Management . . 5
2.4 Redux . 6
2.5 Progressive Web Apps . 7
2.6 Native Application . 8
2.7 Video Streaming . 9

3 Progressive Web App 10
3.1 How Progressive Web Apps Work: A Step-by-Step Guide 10
3.2 Ways to Access Progressive Web Apps . 11
3.3 Fast Loading Speed . 11
3.4 Offline Functionality . 12
3.5 Add to Home Screen . 12
3.6 Push Notifications . 12
3.7 Splash Screen . 13
3.8 Responsive Design . 13
3.9 Access to Device Features . 14
3.10 Security . 15
3.11 Discoverability . 15
3.12 Service workers . 16
3.13 Service Worker Stages . 17
3.14 Overcoming the Challenges of Updating Service Workers 18
3.15 Informing Users of Service Worker Updates 18
3.16 App Shell Architecture . 19
3.17 Manifest File . 19
3.18 Caching Strategy . 20
3.19 Browser Compatibility: Challenges and Solutions 21
3.20 Workbox . 21

vi

Eni Veshi Bachelorarbeit

3.21 Storage Solutions for Progressive Web Apps: Choosing the Right Option 22
3.22 Business Impact . 23

4 WebRTC 24
4.1 Key Features and Benefits . 24
4.2 Data Channels . 25
4.3 Network Address Translation . 25
4.4 ICE . 25
4.5 STUN . 26
4.6 Security . 26
4.7 TURN . 27
4.8 Limitations and Compatibility Issues . 28

5 Requirements and app design 29
5.1 A brief overview of the Crew Active time recording system and its

existing features . 29
5.2 Requirements . 30
5.3 Technology Stack . 31
5.4 Database Design . 32
5.5 Calendar View Design with Offline Functionality and Network Status

Integration . 34
5.6 Incoming Call Handling and User Interface 36
5.7 Video Conference User Experience and Interface Design 37

6 Implementation and Results 38
6.1 Conversion to a Progressive Web App . 38

6.1.1 Register a Service Worker . 38
6.1.2 Cache Files with Service Worker 39
6.1.3 Manifest File . 39
6.1.4 Offline Functionality . 40
6.1.5 Offline User Activity Synchronization with the Crew Active Server 43

6.2 Video Streaming . 44
6.2.1 Signal Channel . 44
6.2.2 Acquiring User Media Streams for Video Conferencing with

MediaStream API . 46
6.2.3 WebRTC Connection Establishment: Process and Optimization . 47

6.3 Applying Code Splitting in the Extended Crew Active System 49
6.4 Testing . 49
6.5 Discussion of the Technical Challenges and Solutions 50

6.5.1 React Component Updates and getUserMedia() 50
6.5.2 WebRTC Connection Process . 50
6.5.3 Manual Testing of the System . 51
6.5.4 TURN Server as a Fallback Solution 51

6.6 Presentation of the results and evaluation of the system’s performance . 52
6.6.1 Progressive Web App Features: Add to Home Screen, Splash

Screen, and App Icon . 52

CONTENTS vii

Eni Veshi Bachelorarbeit

6.6.2 Client-side Implementation: Network Status Indicator and Off-
line Operations . 53

6.6.3 Device Selection Dialog for Video Streaming 54
6.6.4 Video Streaming Interface . 55

6.7 Evaluating Crew Active System with Google Lighthouse 56

7 Conclusion and Future Work 58
7.1 Summary of the main findings and contributions 58
7.2 Limitations . 59
7.3 Suggestions for Further Improvements 60

Figures 61

CONTENTS viii

Eni Veshi Bachelorarbeit

Abbreviations and Acronyms

API Application Programming Interface

CAGR Compound Annual Growth Rate

CLI Command Line Interface

CSRF Cross-Site Request Forgery

CSS Cascading Style Sheets

DOM Document Object Model

GPS Global Positioning System

HTML HyperText Markup Language

ICE Interactive Connectivity Establishment

IP Internet Protocol

iOS iPhone Operating System

JSON JavaScript Object Notation

MERN MongoDB, Express, React, Node.js

NAT Network Address Translation

NoSQL Not only SQL

PWA Progressive Web App

SEO Search Engine Optimization

SPA Single-Page Application

SSR Server-Side Rendering

STUN Session Traversal Utilities for NAT

TURN Traversal Using Relays around NAT

UI User Interface

URL Uniform Resource Locator

WebRTC Web Real-Time Communication

ix

Eni Veshi Bachelorarbeit

XSS Cross-Site Scripting

CONTENTS x

Eni Veshi Bachelorarbeit

Chapter 1

Introduction

1.1 Background

Time recording systems are essential in today’s fast-paced work environments. They
play a critical role in various industries and contexts, such as project management,
freelancing, and remote work, where effective time management is crucial for success.
These digital systems help employees track their time on tasks, streamlining workflows
and eliminating the need for manual timekeeping. Traditional time recording systems
have been web-based platforms, offering solutions only when users are online. This
reliance on an internet connection presents a significant limitation, as there may be in-
stances when users need access to their data due to connectivity issues, hindering their
productivity. Also, when users want to have a video conference, they often have to use
different platforms, which makes their workflow even more complicated. Businesses
increasingly seek comprehensive, tailored solutions for their time management and
communication needs. These solutions should ideally be accessible offline, allowing
users to continue working without interruption and seamlessly integrate video confer-
encing capabilities to streamline communication. A more robust and user-friendly time
recording system can be developed by addressing these gaps, ultimately enhancing
productivity and collaboration across various industries.

1.2 Motivation

The motivation of this bachelor’s thesis is to extend an existing time recording system
with an offline feature so that users can complete the most important tasks even if
they are offline and do not have access to the internet. Resolving the problem will be
achieved by incorporating advanced web app features. Additionally, the possibility
that the user can communicate in real time with video streaming will make the system
more engaging and interactive. This approach benefits the business because it will
reduce costs and archive excellent efficiency and accuracy in time tracking.

1

Eni Veshi Bachelorarbeit

1.3 Objective of the bachelor thesis

This bachelor’s thesis aims to extend the Crew Active web-based time recording
system by incorporating the features of a Progressive Web App and integrating video
streaming through WebRTC technology. The objective is to improve the user experience
and give a more inclusive solution for time management and record keeping.

The specific objectives of the thesis include the following:

1. To develop and implement an offline-capable Progressive Web App version of
the Crew Active time recording system, addressing the limitations of its current
online-only functionality.

2. To integrate video streaming functionality using WebRTC technology, allowing
users to communicate and collaborate in real-time.

3. To optimize system performance and address technical challenges during devel-
opment, ensuring a seamless user experience.

This thesis aims to give a practical solution for businesses wishing to increase the
efficiency and accuracy of their time-tracking systems. The findings of this study
will contribute to the development of innovative time management tools and provide
valuable insights for companies interested in implementing similar strategies.

Capter 1. Introduction 2

Eni Veshi Bachelorarbeit

Chapter 2

Literature Review

This literature review aims to provide an overview of the essential technologies,
concepts, and advancements in web application development playing a crucial role
in the project context. The project focuses on extending the existing Crew Active web
application that leverages modern frameworks and libraries to deliver a seamless user
experience, incorporating responsive design, efficient state management, and real-time
communication capabilities.

Web Application: A fundamental understanding of web applications, their architecture,
and the technologies used for frontend and backend development.

Single Page Application (SPA): An explanation of SPAs and their advantages and
drawbacks, focusing on improving user experience through reduced page reloads and
seamless interactivity.

React: A popular JavaScript library for building user interfaces, allowing efficient
component-based development, performance optimization, and state management.

Redux: A state management library that can be used with React to facilitate centralized
and predictable state handling in web applications.

Progressive Web Apps (PWAs): A discussion of PWAs, combining the best web and
native applications, offering enhanced performance, offline capabilities, and improved
user experience.

Native Application: An overview of native applications specifically designed for
individual platforms, providing platform-optimized performance and user experience.

Video Streaming: A review of video streaming technologies, focusing on WebRTC and
its widespread use in various industries and applications, such as video conferencing,
online learning, customer service, and gaming.

3

Eni Veshi Bachelorarbeit

2.1 Web Application

A web application is a program [56] hosted on a web server and accessed through a
web browser. By entering the web app’s URL into a browser, the user triggers a GET
request from the browser to the server hosting the web app. The browser reads the
static files sent back from the server, including HTML, CSS, and JavaScript.

Figure 2.1: Web Application Architecture

Web applications are entirely portable and do not require any further setup. The
most used programming languages for web applications are frontend languages like
JavaScript, HTML5, and CSS, responsible for the user interface and interactivity, and
backend languages like Python, Java, and Ruby, which handle server-side processing,
data management, and communication with the frontend. The rise [29] of server-side
JavaScript systems like Node.js has also increased JavaScript’s usage on the backend.
Popular web application frameworks and libraries, such as React, Angular, Django,
or Ruby on Rails, assist developers in creating web applications more efficiently
by providing reusable code and pre-built components [21]. Responsive design is
crucial in web applications, enhancing the user experience across different devices
and screen sizes [22]. CSS media queries allow web applications to adjust their layout
and appearance for any screen size [36]. Security is a vital aspect of web application
development. Following best practices, such as validating user input, securing data
transmission, and regularly updating software components, is essential to create
reliable and trustworthy web applications [9]. Web applications can be viewed on
various browsers and devices, allowing many users to share the same program version
and automatically deliver the most recent updates.

2.2 Single Page Application

Single-page applications (SPAs) are online apps that load new content into a single web
page as the user interacts with the program instead of loading new pages from the
server [53]. Because users are not sent to a new page every time they interact with
the app, SPAs offer a more fluid and instantaneous experience. SPAs aim to deliver
an outstanding user experience by imitating a "natural" environment in the browser –
no page reloads, no extra waiting time [20]. They rely heavily on JavaScript to load
content, with just one web page loading all other content using JavaScript. Most
SPAs use frontend JavaScript frameworks and libraries like Angular, React, or Vue
to build user interfaces and manage the application’s state on the client side [34].
These tools provide the necessary functionality to control the state of an application
and update pages in real time. However, single-page applications also have some
drawbacks. They require a long time to load because the framework of the SPA ships

Capter 2. Literature Review 4

Eni Veshi Bachelorarbeit

its JavaScript code with the initial request. Code splitting can improve the loading time
by breaking the application into smaller chunks loaded on demand. Another issue
is that SPAs can negatively impact SEO (Search Engine Optimization) because they
initially deliver an empty HTML file, which takes time to load the JavaScript code to
populate the page content. Search engine crawlers often read only the empty HTML
file [8]. To overcome this challenge, developers can use server-side rendering (SSR) or
pre-rendering techniques to improve the initial page load and make the content more
accessible to search engine crawlers [54]. SPAs are particularly suitable for use cases
like dashboard interfaces or interactive tools, where the application needs to provide a
seamless and responsive user experience with minimal page reloads.

2.3 Exploring React: Components, Performance, and State
Management

React is a JavaScript library that allows building user interfaces for web applications
with better structure and making many performance optimizations in the background
[18]. It was created by Facebook and released in 2013 [16].

Figure 2.2: Nested React Components

Components are the building elements that form the foundation of React and may be
used to create any user interface. To build more complex applications, React has a
feature to combine and nest the components and reuse them. As the user interacts
with an application, React quickly adds new content to the page using a virtual
DOM (Document Object Model). The virtual DOM is only a lightweight copy of the
real DOM so it can be updated considerably more quickly than the real DOM itself.
React rerenders the components only if their states change [19]. That will improve
the application’s performance if it has been used correctly. Nesting and reusing
components is a good approach, but also it can cause rerendering on components that
do not need to rerender.

For small applications, it is enough that developers use the states of React. However, in
large applications, it is recommended to use third-party libraries developed to handle

Capter 2. Literature Review 5

Eni Veshi Bachelorarbeit

the state problem. One of the best libraries that exist until now is Redux [47]. It will
boost the developing process by giving the possibility of a better way to debug the
application’s state.

React is a library, so it depends on other libraries. For example, another library must
be integrated to make routing possible. This allows developers to create and integrate
their own libraries as needed. React also has a big community where if problems occur,
it will be straightforward to find a solution to that problem.

Figure 2.3: React prop drilling

In Figure 2.3, we can see a prop drilling in React. Prop drilling is when a parent
component can pass its state or functions to the children’s components. In this
example, the name will be the state, and the setName() function will be the function
to change the name state. If we want to change the name in component 3, we must
pass the function setName through component 1, component 2, and then component 3.
Changing the state at component 3 will cause a rerender to all components 1, 2, and 3
with the state name passed through prop drilling.

2.4 Redux

Redux is a library for handling application states that may be combined with the React
framework [18] to create modern JavaScript apps. They are making it easier to control
the state and debug complicated programs by providing a centralized and predictable
method for managing the application state.

State management in Redux lets us get to any state from any component we want.
We do not need prop drilling, so we avoid a lot of rerenders that the prop drilling

Capter 2. Literature Review 6

Eni Veshi Bachelorarbeit

Figure 2.4: Access Redux state from React components

would cause. As shown in Figure 2.4, if we change the name state in component
3, redux will cause to rerender of all components that have the state name. This
example in Figure 2.4 will cause only a rerender of component 3. In Redux, the store
is a JavaScript object containing the entire application’s state. The store must handle
all state management and provide an interface for updating and reading the data.
Reducers [47, 48] are special functions that update the state by taking the current state
and an action as input and returning a new state as output.

An action is a simple JavaScript object representing the goal of modifying the current
state. A type attribute specifies the action’s nature and any other information that may
be required. The Store receives the actions and calls the relevant reducer to change the
state.

Redux’s middleware, actions, and reducers add features like logging and asynchronous
actions.

2.5 Progressive Web Apps

Progressive web apps (PWAs) are a type of web application that leverage cutting-edge
web technologies to replicate native app experiences within a web browser. PWAs
can be accessed online through a web address, but they can also be downloaded and
installed on a user’s device for offline usage [12].

Push notifications, offline caching, and background synchronization are just some of
the current web capabilities made possible by PWAs. By these characteristics, PWAs
may offer consumers a quick and stable experience, even in poor connectivity settings.
Furthermore, PWAs can respond to the screen size of their viewer and function well
on both desktop and mobile devices.

Many significant organizations, like Alibaba, Pinterest, Forbes, and Tinder, have
recently adopted PWAs to improve their customers’ online experiences [59].

Capter 2. Literature Review 7

Eni Veshi Bachelorarbeit

• Alibaba: Progressive Web App boosts mobile web conversions by 76% for
Alibaba.com, resulting in higher conversions across all browsers. Addition-
ally, there was a 14% increase in monthly active users on iOS and a 30% increase
on Android. Moreover, the interaction rate for adding to the home screen was
four times higher [68].

• Pinterest: Pinterest’s PWA resulted in a 40% increase in total time spent, a 44%
growth in user-generated ad revenue, and a 60% increase in core engagement
[40].

• Forbes: Forbes’ PWA mobile site has reduced content rendering time from 6.5
seconds to 2.5 seconds and led to higher engagement rates, with users spending
up to 40% more time per session and viewing 15% more pages per session [6].

• Tinder: Tinder achieved significant improvements with their PWA, including
more than halving loading times from 11.91 seconds to 4.69 seconds, resulting in
increased engagement across the board. Furthermore, their PWA is 90% smaller
than their native app [41].

PWAs allow web developers to give their consumers an experience on par with native
apps regarding speed and reliability. PWAs use cutting-edge web technologies to
provide features such as push notifications and offline caching, which were previously
exclusive to native applications.

2.6 Native Application

Native applications are specifically designed and developed mobile apps for individual
platforms like iOS or Android [24]. These apps are installed directly on devices, allow-
ing them to fully utilize their capabilities, such as the camera, GPS, and accelerometer.
Native apps offer a platform-optimized performance and user experience since they
are created using programming languages and frameworks unique to the platform.

Without an internet connection, users can still enjoy the seamless experience provided
by native apps. These applications often follow strict security guidelines and can
take advantage of device-specific security features, resulting in better security [44].
Developers use languages like Swift and Objective-C for iOS and Java or Kotlin for
Android when creating native apps, generally distributed through app stores such as
the App Store or Google Play Store.

On the other hand, native app development has challenges, including needing sep-
arate codebases for different platforms, leading to more extended development and
maintenance times. Furthermore, native apps must be approved for distribution in
app stores, which can sometimes be time-consuming or limiting.

Native applications deliver a high-performance and customized user experience, lever-
aging platform-specific features and optimizations. Although development and dis-
tribution may present particular challenges, native apps remain a popular choice for

Capter 2. Literature Review 8

Eni Veshi Bachelorarbeit

businesses and developers aiming to provide the best possible experience for their
users.

2.7 Video Streaming

Technology to broadcast videos in real-time has been around for a while, giving
viewers instantaneous access to visual information. One of the essential technologies
for online video streaming is real-time online communication (WebRTC).

WebRTC was initially developed by Google in 2011 and released as open source. Its
success as a medium for instantaneous interaction has led to its widespread use ever
since [71]. Google Chrome, Mozilla Firefox, and Apple Safari are just a few popular
web browsers with integrated WebRTC compatibility, allowing for smoother interaction
with web-based applications. WebRTC has established a real-time communication and
collaboration standard across many industries and use cases.

WebRTC has seen a significant rise in usage, particularly in video conferencing and
remote collaboration, due to the COVID-19 epidemic. Businesses and individuals have
resorted to WebRTC-powered applications and platforms to interact and cooperate in
real time due to the growing prevalence of remote work and social isolation. According
to a report by Grand View Research [49], the global WebRTC market size was valued at
1.74 billion in 2020 and is expected to grow at a compound annual growth rate (CAGR)
of 45.2% from 2021 to 2028. The research identifies the COVID-19 pandemic as a
significant factor boosting the demand for real-time communication and collaboration
solutions.

Applications that use WebRTC include [78, 30]:

Video Conferencing WebRTC is the best option for online meetings and video confer-
encing since it enables immediate participant interaction. WebRTC’s ability to facilitate
high-quality audio and video communication has made it a favorite among businesses
and organizations searching for effective distance collaboration and communication
methods.

Online Learning WebRTC’s real-time communication capabilities make it an excellent
distance learning and teaching platform. WebRTC facilitates two-way communication,
encouraging more student participation in class.

Customer Service Because of its real-time communication characteristics, WebRTC
is ideal for supporting needy customers. WebRTC offers real-time contact between
customers and helps workers, allowing for a more efficient and effective manner of
addressing customer support issues.

Gaming With WebRTC, players may interact with one another in real-time, creating a
more enjoyable and interactive gaming experience.

Capter 2. Literature Review 9

Eni Veshi Bachelorarbeit

Chapter 3

Progressive Web App

3.1 How Progressive Web Apps Work: A Step-by-Step
Guide

Progressive Web Apps are web applications that provide a native app-like experience
by incorporating features such as offline access, fast loading, and the ability to be
installed on a user’s home screen [51]. In this section, a step-by-step guide on how a
PWA works is provided, starting from the initial request:

1. The browser sends an initial request to the server for the HTML, CSS, JavaScript
files, and Web App Manifest that comprise the PWA.

2. Service worker registration: The application checks if a service worker is re-
gistered for the current URL, then a new service worker is registered if there isn’t
one.

3. Service worker installation: The service worker is installed in the background,
separate from the application’s main thread.

4. Service worker activation: The service worker is activated and begins to control
the pages of the PWA.

5. Asset caching: The service worker uses the Cache API to cache assets and data,
such as HTML, CSS, JavaScript, images, and API responses, for offline access.
This enables the PWA to load faster and provide a better user experience.

6. First paint: The browser renders the first paint of the PWA, displaying the content
to the user.

7. Offline access: If the user goes offline, the service worker continues to control the
pages of the PWA and serves the cached data, ensuring a smooth experience for
the users, even when they are offline.

The process of a PWA involves initial requests, service worker registration, installation,
activation, asset caching using the Cache API, first paint, and offline access. Web App

10

Eni Veshi Bachelorarbeit

Manifest also plays a crucial role in making the PWA feel more like a native app. This
ensures a seamless and responsive user experience, even when the user is offline.

3.2 Ways to Access Progressive Web Apps

Progressive Web Apps (PWAs) can be accessed in different ways, depending on the
user’s platform and device capabilities:

• In a web browser: PWAs are primarily accessed through a web browser, just like
any other website.

• In a native app container: PWAs can be packaged as native apps and installed on
a user’s device, providing a native-like experience.

• On the home screen: This approach offers a native-like experience, as the PWA is
launched directly from the home screen, like a native app.

• In an app store: PWAs can be submitted to app stores like the Google Play
Store, but it may be difficult to get approval from the Apple App Store since it
only accepts Progressive Web Apps on a case-by-case basis. However, once a
PWA is approved, any future updates do not require review by the App Store,
simplifying the update process.

3.3 Fast Loading Speed

Progressive Web Apps strongly emphasize fast loading speeds to enhance user exper-
iences and enable seamless navigation. A fundamental feature that allows PWAs to
load quickly is their ability to cache application assets. By storing these assets in the
cache, PWAs can load the application without making additional requests to the web
server, thus eliminating the need to wait for server responses.

To ensure smooth and speedy loading, developers utilize several performance optimiz-
ation techniques:

• Lazy loading: This approach only loads a web page’s essential components and
content when a user first accesses it. Additional content is loaded as the user
interacts with the page or scrolls down, reducing the initial load time.

• Code splitting: This technique involves breaking the application’s code into
smaller, more manageable chunks. These chunks are loaded on-demand, ensuring
users only download the necessary code for the current view. This results in
reduced load times [43].

• Image optimization: By compressing and resizing images, PWAs can decrease
the amount of data that needs to be downloaded, thereby improving load times.

These strategies allow PWAs to deliver fast loading speeds and create a more enjoyable
and efficient user experience.

Capter 3. Progressive Web App 11

Eni Veshi Bachelorarbeit

3.4 Offline Functionality

A PWA can also be accessed offline because of its architecture. Progressive Web App
has the ability, through a service worker (Javascript file), to run in the background
and fetch the cache files for the Application to load when the user has no internet
connection.

Figure 3.1: Improving the user experience [70]

For example, using a service worker to cache resources and doing predictive prefetching
makes the site faster and more reliable. Making the site Installable allows the customers
to access it directly from their home screen or app launcher [70]. When the user is
offline, the web browser will fetch the static files directly from the cache, giving the
user access to the PWA with the last updated caches.

3.5 Add to Home Screen

The "Add to Home Screen" feature of PWAs is essential because it gives the user the
feeling that he is using a native application. The user does not have to start a web
browser and go to the application’s domain because it will be redirected automatically
when the icon is clicked. Providing this feature will not make any difference like
opening a standard web app because everything runs in a web browser, just that the
user will get the feeling that it is opening a native app.

3.6 Push Notifications

Push notifications are crucial in engaging users and enhancing their experience within
progressive web apps. Like native applications, PWAs can utilize push notifications
to send timely, relevant information to users, even when the app is not currently

Capter 3. Progressive Web App 12

Eni Veshi Bachelorarbeit

open or running in the background [31]. PWAs rely on service workers to manage
push notifications. Service workers are scripts that run in the background, separate
from the web page, enabling the app to receive and send push notifications across
different platforms, such as Android and iOS. This provides a consistent experience
for users, regardless of their device. Push notifications can be employed in various
scenarios within a PWA, such as alerting users about new messages, notifying them
of updates or news, reminding them of upcoming events, or promoting special offers.
These notifications help to keep users engaged and informed about important events
or updates related to the app. Implementing push notifications in PWAs requires a
POST request to the corresponding push notification services of the Apple App Store
or Google Play Store, along with a specific device token. This token serves to identify
the device rather than the PWA itself, allowing push notifications to be delivered
seamlessly. However, there might be some limitations or challenges in implementing
push notifications in PWAs, such as platform-specific restrictions or differences in
the available APIs. Despite these challenges, push notifications to remain a valuable
feature for PWAs, offering users a native app-like experience with timely and relevant
information.

3.7 Splash Screen

When launching an application on a device, the splash screen [26] serves as an
intermediate frame. This screen is displayed while the application loads all necessary
files to build the app, effectively masking the loading time. Just like native applications,
PWAs can exhibit static or dynamic splash screens with various animations.

By showcasing a splash screen, the user perceives a shorter loading time for the
application to be fully constructed. This enhances the user experience by providing
diverse information or a loading indicator during the wait. Incorporating a visually
appealing splash screen not only improves the user experience but also establishes a
positive first impression of the application.

3.8 Responsive Design

Responsive design plays a crucial role in the success of Progressive Web Apps, as
it ensures a consistent and native-like experience across various devices and screen
sizes. To achieve this, PWAs must adapt seamlessly to different smartphone, tablet, or
desktop displays.

One technique to implement responsive design in PWAs is using CSS media queries.
Media queries allow developers to apply different styles and layouts depending on
the device’s screen size, orientation, and resolution [36]. This ensures that the app’s
interface remains visually appealing and functional regardless of the user’s device.

Managing CSS files can become complex and challenging, mainly fitting to multiple
screen sizes and devices. This is where utility-first CSS frameworks, such as Tail-
windCSS [57], come into play. TailwindCSS offers a collection of pre-defined CSS

Capter 3. Progressive Web App 13

Eni Veshi Bachelorarbeit

classes that can be applied directly to the HTML code, streamlining the styling process.
Additionally, TailwindCSS includes a configuration file for managing themes and
design standards, making it an organized and efficient solution for responsive design.

When creating a responsive PWA, it’s essential to avoid using fixed sizes for elements
and instead rely on relative units, such as percentages, to ensure a flexible layout. This
allows the app to adapt to various screen sizes and resolutions, providing a consistent
user experience across different devices.

Responsive design is a critical aspect of developing successful PWAs. By employing
techniques like CSS media queries, utility-first CSS frameworks like TailwindCSS,
and using relative units, developers can create PWAs that provide a native app-like
experience for users on any device.

3.9 Access to Device Features

Some of the device features [79, 69] that a PWA can access include:

• Media capture: Media capture allows PWA to use the camera and microphone.

• Geolocation: The Geolocation API enables users to retrieve their location.

• Notifications: The Notification API enables PWAs to send and receive push
notifications.

• Authentication: Web Authentication API allows passwordless authentication.

• Vibration: The Vibration API will enable PWAs to vibrate a device.

• Contact picker: The Contact Picker API enables PWAs to select users’ contacts.

• Network info: The Network Information API provides information about the
connection of the device

• Bluetooth: The Web Bluetooth API connects apps to Bluetooth.

Access to device features is a crucial component of PWAs, allowing the application
to access and utilize a variety of device characteristics to provide users with a more
native-like experience.

Capter 3. Progressive Web App 14

Eni Veshi Bachelorarbeit

3.10 Security

Security is a critical concern for PWAs because they usually handle user-sensitive data.
PWAs should follow these practices:

• HTTPS: PWAs, like any other Web applications, have to be served over HTTPS
[61] to ensure that all data transmitted will be encrypted and secure.

• Cross-Site Scripting (XSS): PWAs must be designed to protect against XSS attacks.
This protection can be archived using modern frameworks like React because
they sensitize every input field [33].

• Cross-Site Request Forgery (CSRF): PWAs must be made to protect against CSRF
attacks, which involve tricking a user into sending an unauthorized request to a
web-based system [28].

• Session Management: PWAs must be designed to manage user sessions securely,
including securely storing session information and protecting against session
hijacking and other threats.

• Data Storage: PWAs must be designed to store sensitive user data securely,
including encrypting stored data and protecting against unauthorized access.

3.11 Discoverability

Discoverability is a critical factor in the success of Progressive Web Apps, as it enables
users to quickly find and access a PWA through web searches and links from other
sites. Since PWAs are built using standard web technologies like HTML, CSS, and
JavaScript, they are easily indexed by search engines, which helps users discover and
visit the PWA via web searches.

The role of web crawlers and search engines in the discoverability process is vital,
as they index PWAs like any other website. To boost the discoverability of PWAs,
developers should include relevant metadata in the HTML headers, such as title tags,
meta description tags, and canonical URLs. This metadata provides additional context
and information for search engines, which in turn helps improve the PWA’s search
ranking. In addition, having a well-organized, accessible, and user-friendly website
contributes to better discoverability. By adhering to web best practices and optimizing
content for search engines, developers can make it easier for users to find and engage
with the PWA.

Capter 3. Progressive Web App 15

Eni Veshi Bachelorarbeit

3.12 Service workers

Service workers are a vital aspect of Progressive Web Apps, providing the ability to
run JavaScript code in the background, separate from the application’s main thread
[35]. Service workers allow PWAs to do things in the background, like cache content,
handle push notifications, and work offline. Doing tasks in the background gives users
a more native-like experience while the PWA is not actively running.

Figure 3.2: Service worker background sync

For instance, a PWA that offers time recording experience can use a service worker to
cache tasks or assignments for offline viewing. Caching files enables users to access
content offline, making the experience easier and more accessible.

Service workers can also be used to do heavy calculations because they run in the
background, so the main threat will not be blocked.

Capter 3. Progressive Web App 16

Eni Veshi Bachelorarbeit

3.13 Service Worker Stages

Service workers undergo several stages during their lifecycle, including registration,
installation, activation, idle, and termination [37, 58].

Figure 3.3: Service Worker Lifecycle and Transitions

• This is the first stage of a service worker’s lifecycle. The service worker goes
through a registration process in the browser by calling the
‘navigator.serviceWorker.register()‘ method.

• Installation: After the service worker is registered, it performs an installation
process in the background. During installation, the browser downloads the
service worker script and caches any necessary resources.

• Activation: After installation, the service worker controls the Progressive Web
App pages. During activation, the service worker can perform any necessary
setup or cleanup tasks, such as removing old caches or updating data.

• Idle: After the service worker is activated, it enters the idle stage. In this stage,
the service worker is waiting for an event or message from the main thread of
the PWA.

• Termination: A service worker can be terminated at any time by the browser, for
example, when the user closes the tab or navigates to a different site. When a
service worker is terminated, it cleans up all associated resources, and the service
worker is no longer active.

The service worker can only be in one stage at a time. In addition, numerous service
workers can be active simultaneously in a PWA, each controlling a unique objective. A
PWA can utilize multiple service workers, each with its tasks and competencies.

Capter 3. Progressive Web App 17

Eni Veshi Bachelorarbeit

3.14 Overcoming the Challenges of Updating Service
Workers

Updating Service Workers present several challenges [25] and problems. Some of the
problems that can occur when updating Service Workers include the following:

• Compatibility Issues: Service Workers can be updated to include new features or
fix bugs. However, these updates may not be compatible with older versions of
the Service Worker or the browser. Updates can lead to compatibility issues and
a poor user experience.

• Stale Cache: Service Workers will cache data and assets to improve performance
and provide offline capabilities. However, when a Service Worker is updated, the
cache may become stale, making the user see the old website version.

• Broken Functionality: Updating a Service Worker can break existing functionality
or introduce new bugs, leading to a poor user experience.

• User Interruptions: Updating a Service Worker can result in user interruptions,
such as a broken user interface. User Interruptions can lead to a poor user
experience and a loss of trust in the application.

Updating Service Workers might bring various challenges and issues. To minim-
ize these difficulties, it is essential to properly test Service Worker updates before
deployment and keep users informed of any potential changes or disruptions. By im-
plementing these measures, PWAs may provide a stable and consistent user experience
even after upgrading Service Workers.

3.15 Informing Users of Service Worker Updates

Informing the users before the service worker is updated is crucial to secure the best
user experience. Users can be doing essential tasks, so interrupting will be the worst
thing to offer the users [5, 80].

There are multiple ways to alert users about new Service Workers versions:

1. Notification: PWAs can send notifications to the user, even when the app is
not running, providing an opportunity to inform the user about updates to the
Service Worker.

2. Pop-up: A pop-up message can be displayed to the user, informing them about
the update and any changes to the app’s functionality.

3. In-app message: An in-app message can be displayed to the user, providing
information about the update and any changes to the app’s functionality.

4. Release Notes: Release notes can be provided to the user, detailing the changes
and updates to the Service Worker and any impact on the app’s functionality.

Capter 3. Progressive Web App 18

Eni Veshi Bachelorarbeit

Providing the user with clear and straightforward information and directions for any
necessary actions, such as refreshing the application or clearing the cache, is always
recommended.

3.16 App Shell Architecture

An application shell is the minimal HTML, CSS, and JavaScript powering a user
interface [42, 32].

The application shell should:

• load fast

• be cached

• dynamically displays content

PWA consists of static files and dynamic data. The static files, such as HTML, CSS,
and JavaScript, remain constant while the user retrieves dynamic data from the server.
Upon opening the application, the static files are used to construct the application shell,
which includes the user interface. Subsequently, the application fetches dynamic data
from the server. Thus, the application requires two separate requests and waits for the
server’s response. By caching the static files (App shell), the application only needs a
single request to obtain user data and display the content. Performance optimization
occurs during the user’s second visit to the web application, as the first visit entails two
requests and caching of the App shell. For the second visit, the App shell is already
cached.

3.17 Manifest File

An application manifest is a JSON document that contains startup parameters and
application defaults for when a web application is launched [66, 67]. Browsers utilize
the manifest to provide a native-like experience for PWAs, such as allowing the PWA
to be installed on a user’s device and displaying the PWA in full screen.

The Manifest file contains these keys:

• lang: The lang key specifies the language.

• name: The name key is the name of the application.

• short name: The short name key is the shorted application name.

• icons: The icon key will be an array of all different sizes of icons for the applica-
tion.

• start URL: The start URL is optional and provides the application’s starting route.

• display: The display key specifies the display mode, fullscreen, standalone,
minimal-ui, and browser.

Capter 3. Progressive Web App 19

Eni Veshi Bachelorarbeit

• orientation: the orientation key specifies the orientation of the device, portrait, or
landscape.

• theme color: The theme color specifies the theme color of the app’s user interface.

• background color: The background color specifies the background color of the
splash screen.

• related applications: The related application key specifies related native apps
available in app stores, along with their URLs and platform-specific IDs.

Linking the manifest file is done through an HTML link tag in the document’s head.

3.18 Caching Strategy

Building PWAs, need some caching. It could be assets(css, js, icons, images), responses,
or a fallback offline page. So choosing strategies that work best for the application is
very important. Common caching strategies are [39]:

• Cache Only: The Cache only strategy will always return the cached files. Cache
still returns the cached files if the user is online or offline. If the files are not
cached, the application will break because it can not access the resources. This
Strategy is suitable for serving resources during the installation of a service
worker.

• Network Only: This caching Strategy will never cache any files. The application
always retrieves the resources from the server. This Strategy is suitable for
dynamic data that must always be up to date.

• Cache First: The Cache first strategy, or Offline first, tries to get the resources
from the cache first, and when no resources are found, it will retrieve them from
the network.

• The Network first or Online first Strategy tries to get the resources from the
internet, and when it fails, the application will get the resources from the cache.

Applying the right Strategy is very important because it improves the user experience,
but using it wrong will drastically worsen it.

Capter 3. Progressive Web App 20

Eni Veshi Bachelorarbeit

3.19 Browser Compatibility: Challenges and Solutions

Most of the time, progressive Web Applications will function across various web
browsers with variable degrees of compatibility.

Figure 3.4: Service worker compatibility [1]

Modern browsers, including Google Chrome, Mozilla Firefox, Apple Safari, and
Microsoft Edge, support the key features of PWAs, such as service worker, push
notifications, and add-to-home screen functionality (Chromium-based) [46, 78, 1].

However, not all browsers will support every feature of the PWA. For example, the old
internet explorer browser does not support service workers. To provide optimal user
experience, the developer has to implement a fallback choice of the PWA. A fallback
option can show a dialog box telling the user to change their browser to use the PWA
to its fullest potential. Because of this, it is best to test the PWA on as many browsers
as possible and set up a fallback option.

3.20 Workbox

Workbox is a collection of javascript libraries and tools that makes it easy to develop
and deploy Progressive Web Apps (PWAs). Workbox offers a simple and extensible API
for registering service workers, caching assets and data, and managing background
synchronization and push notifications [81]. All the tools that workbox offers make it
possible that developers can concentrate more on application logic and user interface.

It is also the most used library for service workers. It is used by 32% of mobile sites
and in many build tools and CLIs, including the Angular CLI, Create-React-App, and
Vue CLI [81, 82]. There are also plugins to most other libraries and frameworks, such
as Next.js.

Capter 3. Progressive Web App 21

Eni Veshi Bachelorarbeit

3.21 Storage Solutions for Progressive Web Apps: Choos-
ing the Right Option

Progressive Web Apps (PWAs) offer a range of storage options for saving and main-
taining data within the application [11, 10]. These storage options include:

• IndexedDB: A NoSQL database built into the browser provides a way to store
and retrieve structured data on the application’s client side [13].

• Web Storage API: A simple key-value store that can store small amounts of data,
such as session data, on the application’s client side [15].

• Cache API: A low-level API that allows developers to cache assets and data, such
as HTML, CSS, JavaScript, and images, for offline access [14].

• Cloud storage: A cloud-based solution, such as Amazon S3 or Google Cloud
Storage, can store and retrieve large amounts of data from the cloud [52].

Choosing the right solution will depend on the specific application requirements and
the stored data type. For example, a PWA that requires offline access has to use cache
API, while an Application that needs more structured data to be accessible offline has
to use IndexedDB. Cache API is best suited to save the static files of the application
shell, IndexedDb is better for User Content, Web Storage API is better for session
tokens, and Cloud storage can be used to synchronize data across multiple devices,
which allows users to seamlessly switch between devices without losing their data or
progress.

Capter 3. Progressive Web App 22

Eni Veshi Bachelorarbeit

3.22 Business Impact

Every business looks for cheaper development solutions that give the best user ex-
perience to make more profits. Here comes PWA, designed to create a fast, reliable,
installable, and engaging standard website. A better user experience will help busi-
nesses increase customer loyalty and conversation rates and attract more returning
visitors.

Figure 3.5: Trivago [70] saw a 67% increase in users who came back online to continue
browsing.

The Trivago case study [60, 70] highlights the importance of offline browsing. For
users who went offline, 67% resumed browsing the site once they were back online,
demonstrating the value of a seamless offline experience.

Figure 3.6: Installed users had a 2.5 times higher conversion rate [70]

The Weekendesk case study [76, 70] presents an approach to promoting PWA in-
stallation. By encouraging installation on the second page visited, they significantly
increased the likelihood of a user adding the PWA to their home screen. Consequently,
users who launched the PWA from their home screen were over twice as likely to book
a stay through the PWA!

In addition to these benefits, PWAs can be less expensive to develop than native apps
because they don’t need as much time and money to build. Moreover, since PWAs
work on any device with a modern browser, companies can reach a wider audience
without developing and maintaining separate apps for each platform.

Capter 3. Progressive Web App 23

Eni Veshi Bachelorarbeit

Chapter 4

WebRTC

4.1 Key Features and Benefits

WebRTC (Web Real-Time Communication) provides an open-source framework for
creating browser-based applications that support real-time audio, video, and data
communication without plugins or additional software [71].

Key features and benefits of WebRTC:

• Real-time communication: WebRTC enables real-time audio, video, and data
communication between browsers, allowing developers to create real-time com-
munication applications [38].

• Browser-based: WebRTC is browser-based, meaning developers can build applic-
ations accessible to many users without requiring additional software or plugins
[75].

• Open-source: WebRTC’s open-source nature provides developers with a flexible
framework that can be modified to create real-time communication apps [72].

• Data channels: WebRTC includes data channels, enabling users to send data in
real time [77].

• Peer-to-peer networking: WebRTC utilizes peer-to-peer networking, allowing
direct communication between browsers without needing a server [23].

• Improved user experience: WebRTC enables seamless real-time communication,
even when the connection is slow or unreliable.

• Wide browser support: WebRTC is widely supported by modern browsers,
including Google Chrome, Mozilla Firefox, Apple Safari, and Microsoft Edge
(Chromium-based) [7].

24

Eni Veshi Bachelorarbeit

4.2 Data Channels

Data channels in WebRTC are similar to WebSockets, providing a bidirectional data
flow. They offer a mechanism to transfer data, such as text, files, or other information,
across browsers in real time without intermediate servers [77, 62].

With the help of a signal channel, peers can share information and set up a connection
between themselves. After establishing the connection, peers can exchange video,
audio tracks, or data through the data channel. One of the advantages of data channels
is that they provide low-latency data transport, enabling browsers to communicate
quickly and efficiently. This fast communication is achieved using peer-to-peer
networking [23].

Peer-to-peer networking minimizes the delay in standard server-based communication
by sending data directly from one peer to another. WebRTC also offers end-to-end
encryption for data channels, ensuring the data is secure when transmitted [2].

4.3 Network Address Translation

Network Address Translation (NAT) is a technology that assigns a public IP address to
a device. A router typically has a public IP address, while each device connected to the
router has a private IP address. NAT translates requests from the device’s private IP to
the router’s public IP with a unique port [27]. While NAT firewalls protect networks
from unwanted incoming data, they can pose challenges for real-time communication
technologies like WebRTC.

NAT may prevent browsers from establishing direct connections with each other in
WebRTC because each browser is behind its own NAT firewall. Achieving a peer-to-
peer connection may require intermediary servers, such as STUN (Session Traversal
Utilities for NAT) and TURN (Traversal Using Relays around NAT), to facilitate the
exchange of network information and establish a real-time communication channel.

4.4 ICE

Interactive Connectivity Establishment (ICE) is used in WebRTC connection to make a
peer-to-peer connection possible. ICE has all the necessary information, such as an
IP address and port number [27]. This information will be retrieved from a STUN
or TURN server to define the best network paths and a stable way to establish the
connection.

ICE also responds to changes in the network, like when an IP address changes or the
network goes down, by re-evaluating the best network path on the fly.

Capter 4. WebRTC 25

Eni Veshi Bachelorarbeit

4.5 STUN

A Session Traversal Utilities for NAT (STUN) server is a network service that determ-
ines a browser’s public IP address and the port number behind a Network Address
Translation (NAT) firewall [27, 74]. To establish a peer-to-peer connection with WebRTC,
each browser behind a NAT must share its public IP address and port number. How-
ever, the browser may not know its public IP address, and that’s where the STUN
server comes into play.

Figure 4.1: Discovering Public IP and Port Using STUN Server [74]

The browser [55] sends a "Who am I" request to a STUN server, which then responds
with the browser’s public IP address. This information can be used to facilitate
peer-to-peer connections for WebRTC applications.

4.6 Security

WebRTC is secure but it is not immune to security risks. WebRTC security is a
complex topic that requires preserving the privacy and secrecy of browser-to-browser
communication and assuring the validity and integrity of sent data [3].

Some of the essential WebRTC security features include:

• Encryption: WebRTC uses encryption to protect the privacy of communication
between browsers. By encrypting the transmitted data, WebRTC helps prevent
eavesdropping and tampering with communication.

• Authentication: WebRTC uses authentication to ensure that the browsers commu-
nicating with each other are who they say they are. Authentication helps prevent
man-in-the-middle attacks, where a third party intercepts and manipulates the
communication between two browsers.

• Access Control: WebRTC uses access control to ensure only authorized browsers
can access the real-time communication channel. Access control helps to prevent
unauthorized access to the communication channel and protects against attacks
such as eavesdropping and tampering.

WebRTC is designed to be secure, but security will always be a complex subject, and it
is essential to be aware of the security dangers and take the best action for protection.

Capter 4. WebRTC 26

Eni Veshi Bachelorarbeit

4.7 TURN

Traversal Using Relays around NAT (TURN) is a protocol that facilitates the trans-
mission of real-time data between two clients located behind different NAT firewalls
[74]. TURN is commonly used in WebRTC applications when direct peer-to-peer
communication is impossible due to restrictive NAT configurations or network policies.
TURN bypasses the Symmetric NAT restriction by opening a connection with a TURN
server and relaying all information through that server [4].

Figure 4.2: Traversal Using Relays around NAT (TURN) and Its Role in WebRTC Applica-
tions [74]

When the connection is not possible from the STUN servers, a fallback solution is
applied through the TURN servers. TURN servers work like signal servers that forward
all packets from client A to client B. In this situation, we will not have a direct peer-to-
peer connection. The drawback of using a Turn server is that they need to handle the
whole communication and requires appropriate performance and bandwidth.

Capter 4. WebRTC 27

Eni Veshi Bachelorarbeit

4.8 Limitations and Compatibility Issues

WebRTC is a powerful technology that lets browsers communicate to each other in real
time. However, it has some problems with compatibility. Some of the most significant
limitations and compatibility issues of WebRTC include the following:

Figure 4.3: WebRTC browser compatibility [1]

Compatibility with browsers: WebRTC has yet to be fully supported by all browsers,
and some may have different levels of compatibility and implementation. This can
result in compatibility issues for users using other browsers, limiting the overall reach
of WebRTC applications [1].

Latency: High-latency connections in WebRTC manifest symptoms such as lagging
audio/video playback, intermittent video freezing, and occasional video frame-rate
drops, although audio playback typically remains smooth. Additionally, logs may
display a high number of picture loss indications, which receivers utilize to request a
full frame refresh [63].

Network Conditions: In particular, WebRTC’s reliance on peer-to-peer networking
makes it vulnerable to the performance of individual users’ networks.

Security: WebRTC is designed to be secure but not immune to security threats. In
particular, the peer-to-peer nature of WebRTC can make it vulnerable to man-in-the-
middle attacks, where a third party intercepts and manipulates the communication
between two browsers [2].

Implementing WebRTC without any library is very challenging because the browser
will also support WebRTC API, but they have different behaviors. To overcome these
differences, a library like adapter.js [73] is recommended. All these limitations and
compatibility problems must be resolved to reach the full potential of WebRTC.

Capter 4. WebRTC 28

Eni Veshi Bachelorarbeit

Chapter 5

Requirements and app design

5.1 A brief overview of the Crew Active time recording
system and its existing features

Crew Active time recording system is a time recording web-based [64] solution designed
to assist businesses of all sizes and specializations in managing a wide range of opera-
tional aspects. These include employee time tracking, project and task management,
communication, location tracking, online booking, and employee absences. Developed
to address the diverse needs of various industries, Crew Active is a comprehensive
solution for organizations seeking time recording and extensive management and
coordination tools.

Crew Active’s core functionality is its efficient timekeeping system, which allows
employees to log hours, view schedules, plan vacations, and monitor their locations
[65]. The system’s user-friendly interface enables users to quickly and effectively use
its features.

Regarding project management, Crew Active offers features such as project scheduling,
task pricing, change order management, and time tracking. Tasks can be assigned
to employees and viewed in different time frames and formats within the system,
including month, day, and week views. The system also displays specific data for each
job, ensuring that workers can always access the most up-to-date information.

Crew Active’s real-time chat feature fosters strong teamwork. At the same time, its
timeline view presents the progress of tasks and projects in a visually appealing and
easy-to-understand format for both employees and supervisors.

One unique feature of Crew Active is the ability for administrators to send task
requests to employees, who can then accept or decline the assignment. This empowers
employees to manage their time and ensures they take on projects that suit their skills
and availability.

The online booking feature in Crew Active allows companies to schedule appointments
with clients quickly. Its user-friendly interface makes it simple for customers to book

29

Eni Veshi Bachelorarbeit

appointments or request services, streamlining the booking process and reducing
administrative costs.

Crew Active offers both web and mobile applications for iOS and Android. While
administrators primarily use the desktop version of the software, which has more
features than the mobile version, it is essential to have offline capabilities to continue
working even without internet access. Introducing PWA features in Crew Active
will enable administrators to use the system regardless of their internet connection,
allowing them to accomplish critical tasks even when offline and ultimately enhancing
the system’s overall value to the organization.

5.2 Requirements

The extended Crew Active time recording system should provide the following fea-
tures:

• Offline Mode: The system should be designed as a Progressive Web App, allowing
it to work offline and allowing administrators to continue working even when
they do not have an internet connection. This means that administrators should
be able to manage task changes when they are offline. This will improve efficiency
and reduce downtime, ensuring that users can continue working even when they
do not have an internet connection.

• Video Streaming: The system should provide video streaming capabilities using
WebRTC technology that allow users to stream video in real-time to other users,
improving collaboration and communication.

• User-Friendly Interface: The system should have a user-friendly interface that
is easy to navigate and use, allowing users to quickly and easily access the
information and tools they need to manage their time and projects effectively.

• Mobile Compatibility: The system should be mobile-compatible, allowing users
with the role of workers to access it from their mobile devices, improving access-
ibility and flexibility.

Capter 5. Requirements and app design 30

Eni Veshi Bachelorarbeit

5.3 Technology Stack

The technology stack used for the Crew Active time recording system comprises several
key components and frameworks that work together seamlessly. The MERN stack
(MongoDB, Express, React, and Node.js) serves as the core part of the stack. This
full-stack JavaScript web application enables rapid development, easier maintenance,
and better performance, making it an ideal choice for the Crew Active system.

Figure 5.1: Crew Active Technology Stack: MERN, React Native and React

MongoDB, a flexible and scalable document-based database management system, can
handle large amounts of data efficiently. Express, the web application framework,
provides Node.js developers a robust and flexible way to build web apps. React creates
the system’s front-end user interface, offering users a fast, responsive interface with
reusable components. Node.js is the back-end server, providing a scalable platform for
constructing server-side applications. Nginx is a reverse proxy to enhance the system’s
security and speed.

The components of the MERN stack interact with each other to create a seamless
experience. For example, React communicates with Node.js to request data from
MongoDB, while Nginx and Express work together to handle web traffic. Socket.IO
ensures real-time updates for all connected devices, making it easy for users to
collaborate and communicate.

In addition to the MERN stack, the system employs several other frameworks and
tools. Material UI is used for designing the user interface, providing customizable
UI components that follow Google’s Material Design guidelines. Framer Motion is
utilized for animation and motion design, boasting an extensive library that simplifies
the creation of complex animations and transitions. Tailwind CSS, a utility-first CSS
framework, is employed for styling and design, making it easy to style UI components.

Overall, the technology stack for the extended Crew Active system offers a robust and
efficient platform for building a comprehensive time-recording solution that addresses
the functional requirements outlined in the thesis. This stack enables the developing

Capter 5. Requirements and app design 31

Eni Veshi Bachelorarbeit

of a highly responsive and feature-rich application, meeting the Crew Active system’s
and its users’ needs.

The client side of Crew Active includes a React Native application for iOS and Android
devices, as well as a web app developed using React.js, further emphasizing the benefits
of using a full-stack JavaScript web application.

5.4 Database Design

The Crew Active Time Recording System’s MongoDB database encompasses many
entities; nevertheless, this overview showcases the most vital ones to clarify its design.

Figure 5.2: A Visual Guide to Database Relationships

The "auth entity" is explicitly designed for authentication, with the ability to incorporate
additional roles as the system expands quickly. The "super user" possesses extensive
privileges, allowing them to access server and application logs, manage administrators
and workers, and support all other users. The system’s architecture streamlines task
delegation and enhances security and stability.

Capter 5. Requirements and app design 32

Eni Veshi Bachelorarbeit

The "assignment entity" is a critical component of the Crew Active time recording
system, representing an administrator’s responsibility to create and assign tasks to
multiple employees. The assignment object houses essential task information, including
work descriptions and due dates. The assignment entity enables administrators to
manage assignments, monitor progress, and furnish workers with the necessary
details to complete their tasks. Administrators can also share assignments with other
administrators, allowing access to the corresponding workers’ jobs but limiting access
exclusively to the shared assignments.

The "job entity" forms a fundamental element of the Crew Active time recording
system, encompassing each worker’s location, start and finish dates, supplement-
ary information, and distance traveled. This entity allows administrators to track
employees’ progress, supervise their locations, and manage their jobs. By accessing
this information, administrators can make informed decisions, ensuring employees
complete their tasks efficiently. The job entity provides a comprehensive overview of
each employee’s progress, enabling improved resource planning and management.

The project requirements also include implementing video streaming capabilities using
WebRTC. This feature enables the super user to initiate video calls with all users in
the system for support and assistance purposes, addressing any issues users may
encounter. Additionally, administrators can establish video streams with their workers
to facilitate better communication and collaboration.

Within the Crew Active system, the "admin," "worker," and "super user" entities
are distinct, each with their unique powers and responsibilities. The login form
authenticates all three entities, including the super user. After successful authentication,
the program’s appearance and navigation are customized based on the user’s role,
granting access to appropriate features and capabilities in alignment with their rights.

Capter 5. Requirements and app design 33

Eni Veshi Bachelorarbeit

5.5 Calendar View Design with Offline Functionality and
Network Status Integration

The calendar view is a crucial feature for administrators, allowing them to assign tasks
to specific employees. When a task is created, all assigned employees receive push
notifications and update their calendars accordingly.

Figure 5.3: Calendar View with Network Status Indicator and Offline Operations Drawer

An essential design requirement for this view shown in Figure 5.3 is incorporating
a button with an icon at (1) that indicates the network’s online or offline status. The
icon will change to a distinct symbol when offline, alerting the user of the lost network
connection. Users can continue working offline during this time, and a counter will
display the number of completed operations. Clicking on the icon will reveal a list
of offline actions in a drawer on the right side. Figure 5.3 showcases a mockup that
includes the network status button with an icon at (1), which changes depending on
the user’s online status. The counter tracks user actions when offline, and clicking
the icon opens a right-hand drawer containing a list of offline operations. A sample
task created by an administrator is displayed at (2), while the navigation drawer with
multiple navigation tabs can be found at (3). The Crew Active logo at (4) turns gray
when the network is offline and orange when online. Administrators can apply filters
at (5) to view the calendar in various ways, such as selecting one or more employees.
The chat button (6) initiates a direct support conversation. Although several actions
are available at (7), they are not within the scope of this thesis.

Capter 5. Requirements and app design 34

Eni Veshi Bachelorarbeit

Figure 5.4: Calendar view icon clicked

In Figure 5.4, the clicking of the icon at (1) will open a drawer at (4), which will display
a list (3) of all the offline operations that the user has performed while disconnected
from the network. At (2), there will be a button with the action to delete all the offline
operations.

The offline operations are all the actions the user has taken while offline. For example,
if an administrator changes different tasks on the calendar, these changes will happen
locally, and an offline operation will appear in the list. The first time the user connects
to the internet, all offline operations will be synchronized with the server and removed
after synchronization. This way, the user will have better control over what has been
synchronized with the server.

Capter 5. Requirements and app design 35

Eni Veshi Bachelorarbeit

5.6 Incoming Call Handling and User Interface

In the Crew Active application context, one of the critical functionalities is facilitating
seamless communication between users through video calls. This feature is essential
for effective collaboration and coordination among team members. To ensure a
user-friendly experience, the application provides an intuitive interface for handling
incoming calls.

Figure 5.5: Incoming Call Interface in Crew Active Application

Figure 5.5 demonstrates the situation when a user receives a call from another user
within the application. Upon receiving the call, a dialog box displays the caller’s image
(if available) and name. The recipient is presented with two options: accept or decline
the call. If the caller cancels the call before the recipient decides, the recipient will be
informed that the call was turned down. On the other hand, if the recipient accepts
the call, a full-screen conference room will open, granting the user access to various
call options for an engaging and productive conversation.

Capter 5. Requirements and app design 36

Eni Veshi Bachelorarbeit

5.7 Video Conference User Experience and Interface Design

Video conferencing is an essential tool that facilitates seamless interaction between
team members, partners, and clients, regardless of their physical locations. The Crew
Active system has to incorporate video conferencing features to ensure smooth user
collaboration and coordination.

Figure 5.6: Video conference mockup

After accepting a call, the user will witness a view depicted in Figure 5.6. The user
shall receive a dialog box initially to select the desired video and audio output for
the conference. Once the video and audio outputs are selected, the dialog box will
disappear, and the local video stream will be displayed on the left-hand side of the
window. In contrast, the remote user’s video stream will be displayed on the right
side. Note that each user’s name will be displayed at the bottom right corner of each
video container. In the middle of the bottom of this window, the user can turn off or
on the audio or video stream and may decline the call at any given moment.

Capter 5. Requirements and app design 37

Eni Veshi Bachelorarbeit

Chapter 6

Implementation and Results

6.1 Conversion to a Progressive Web App

Implementing a Progressive Web App (PWA) in the Crew Active system, the following
steps have been followed:

6.1.1 Register a Service Worker

The service worker caches the application’s static assets and serves them to the user,
even when the network is unavailable [45]. It first attempts to display cached data
and then fetches updated data from the server in the background, ensuring that users
can access the most current information, even offline. The offline-first strategy enables
continued application use without a network connection.

The implementation of the PWA starts with registering a service worker by creating
and registering a JavaScript file in the main HTML file. The client side of Crew
Active uses React and is initialized as a React Progressive Web App (PWA) template,
which incorporates Workbox internally. This integration [17] simplifies the process of
writing and registering the service worker logic. The React PWA template generates
all required files, including the service worker file, leaving only the task of changing
the service worker registration from the unregister to the register method in the main
index.js file.

To ensure the best user experience, it is crucial to address the issue of updating the
Crew Active system when changes are made and a new version is deployed. Users are
informed of new versions when available by implementing an interval for checking
the latest version of Crew Active every five minutes. A dialog box prompts the user
to manually close all open tabs of Crew Active and reopen the application to load
the latest version. This approach allows users to choose when to update without
interrupting their work. To minimize user workflow disruption, the refresh and closing
of tabs are not performed programmatically.

38

Eni Veshi Bachelorarbeit

6.1.2 Cache Files with Service Worker

The precache feature in a React PWA template caches all the application’s static assets
in the service worker. The precache feature is typically implemented using a tool
such as Workbox, which is included in the React PWA template. When the service
worker is registered and activated, it will cache all the files specified in the precache
configuration. This way, when the user visits the application, the service worker will
serve the cached assets first, improving the loading speed and providing an offline-
first experience. The precache feature is handy for assets that do not often change,
such as stylesheets, images, and JavaScript files. The precache feature in the React
PWA template will cache all public folders in react tree. By caching these assets, the
application can load faster and provide a more reliable experience, even when the user
is offline.

6.1.3 Manifest File

This file contains all the metadata about the app, such as its name, icons, start URL,
display mode, theme color, and background color. The browser uses this information
to show the app on the user’s home screen and customize its appearance.

Figure 6.1: The manifest file

The manifest.json file is linked in the index.html file using the link tag.

Capter 6. Implementation and Results 39

Eni Veshi Bachelorarbeit

6.1.4 Offline Functionality

So far, Crew Active can operate offline, is discoverable, and can be installed. Yet, while
offline, it only loads static files. Implementing a solution that allows users to access
the most recent data (user-specific data) loaded from the internet is essential.

Before exploring this, it is essential to examine the client-side state management process
to determine the most effective way to persist all relevant data.

Figure 6.2: Client-side State Management with Redux Slices

In the situation shown in Figure 6.2, the user is already logged in, and a POST request
is made to retrieve the corresponding data for the user from the server. The server then
sends back all the data required to the user. This data is saved as states using Redux,
a popular state management library for React applications, and is split into different
slices. This approach preserves the data only when the application tab is open and
allows for various other operations. All the necessary data is available now, but it only
exists on the client side while the tab is open. The next step in the implementation
process involves persisting this data on the client side so that the user can access it
even when offline but already logged in.

Capter 6. Implementation and Results 40

Eni Veshi Bachelorarbeit

Figure 6.3: Efficient Data Management: Persisting User Data and Caching Static Files

Figure 6.3 illustrates the solution implemented in the extended Crew Active system to
enable offline access to static files and the latest fetched user data. When the application
is opened in the browser, the system checks if a service worker is registered. If not, it
registers the service worker, which is crucial for enabling offline functionality (at this
point, everything still needs to be cached). Next, the client side of Crew Active makes
a GET request to the Crew Active server for all static files and a POST request for user-
specific data. The service worker caches the static files in the browser’s cache storage,
while the user data from the POST request is saved in Redux state management. Redux
Persist, a persisting library designed explicitly for Redux state management, is used to
automatically persist changes in the Redux state in IndexedDB storage, ensuring that
the data is accessible even offline. When the application is opened again while offline,
the system retrieves the cached static files from cache storage and uses Redux-Persist
to dispatch the persisted data into the Redux state. In the background, the client side
of Crew Active makes a POST request to the Crew Active server to receive the latest
data. If there are any changes from the old data, the client updates the data in Redux
with the new one and re-renders the client. If there are no changes, everything remains
the same, and no re-rendering occurs.

The library Redux Persist [50] is used to persist the Redux state in the client’s browser
storage, ensuring that the state remains available even after the user closes the browser
or refreshes the page. Redux-Persist works by automatically serializing and deseri-
alizing the state to and from the browser storage, integrating with the Redux store.
This approach makes it easy to retrieve the persisted state and restore the application’s
state when reloaded. Redux Persist supports multiple storage backends, such as local
storage, session storage, and IndexedDB, providing flexibility for different scenarios.
IndexedDB storage offers notable advantages, including superior performance and the
capacity to manage larger volumes of data compared to alternative storage options.

Capter 6. Implementation and Results 41

Eni Veshi Bachelorarbeit

Figure 6.4: Offline Data Management and Synchronization Process

The sequence diagram in Figure 6.4 provides a detailed overview of the steps when
users open the application in their browser. First, the service worker is activated,
retrieving cached static files from the browser cache storage. The app then activates the
Redux Persist library, which populates the Redux state by obtaining the persisted state
from IndexedDB, transforming the raw state into a JavaScript object, and dispatching
it to the Redux state library. This approach enables the app to launch quickly in the
browser with all available content, eliminating the need to wait for a server response.

The service worker then checks for updates or changes to the static files on the server.
If updates are found, the service worker displays a dialog informing the user that a
new application version is available. The user can close all tabs to load the new version
or continue working with the existing version. If the user opts to load the latest version,
the cache is populated with it, and the old version is removed.

Capter 6. Implementation and Results 42

Eni Veshi Bachelorarbeit

Simultaneously, the client-side application fetches the latest user data from the server,
dispatching the new state to Redux. Redux Persist synchronizes the changes if updates
are present, ensuring that the updated Redux state entirely persists in IndexedDB.

This solution enhances the client-side application’s performance upon initial opening
by displaying the content immediately and fetching new data from the server in the
background to update the content. As a result, users enjoy a better experience when
opening the application in their browser.

6.1.5 Offline User Activity Synchronization with the Crew Active
Server

So far, the Crew Active application can be opened offline in the browser, and the entire
application state persists. The next step involves implementing a solution that allows
users to perform offline actions, which will be synchronized with the server when the
user returns online.

Figure 6.5: Creating a Task Offline and Syncing with Server

Figure 6.5 illustrates the solution for synchronizing offline user activity with the Crew
Active server. When a user is offline, they can create a task, and all the required
payload for the task creation is saved in the Redux state. Redux Persist automatically
persists any changes in the Redux storage, ensuring all data persist locally for later use
when the user is online.

Capter 6. Implementation and Results 43

Eni Veshi Bachelorarbeit

Once the user is online, the Crew Active application in the browser checks if the user
has any offline activity. If so, the data is retrieved from Redux, and the application
requests the server to initiate the offline task.

After receiving the server response, a new state containing the data from the server is
dispatched to Redux, and Redux Persist automatically persists in the updated state.
This ensures that when the user opens the application in the browser next time, all
content is pre-rendered without needing an initial request to the server.

Finally, the application re-renders all components where the data from the created task
is displayed.

6.2 Video Streaming

In Crew Active, WebRTC (Web Real-Time Communication) enables real-time client
communication. This technology allows for peer-to-peer communication between
browsers, eliminating the need for a central server to facilitate communication.

The first step to implementing WebRTC in Crew Active is establishing a connection
between the two clients. This is done using a signaling process, where the clients
exchange information about their network and media capabilities.

6.2.1 Signal Channel

To facilitate real-time data exchange between users, a signal channel is implemented
using Socket.io. Figure 6.6 illustrates a real-time signal channel developed with
Socket.io, which enables users to send data to each other seamlessly.

Figure 6.6: Real-Time Data Exchange between Clients Using Socket.io Signal Channel

In this scenario, Client A sends data to Client B. Client A’s Socket.io client emits
a signal containing the data payload. The Socket.io server captures this signal and
broadcasts the data to other connected clients, including Client B. Consequently, Client
B instantly receives the data sent by Client A, allowing for real-time information
exchange between the two users through the signal channel.

Capter 6. Implementation and Results 44

Eni Veshi Bachelorarbeit

Figure 6.7: Signal Channel Implementation for Secure and Efficient Data Exchange Between
Users

Figure 6.7 depicts the creation of a signal channel named "webrtc-signal" that allows
users to send data to the server. The client sends data, including a token and payload
key, to the server via WebSocket. The server verifies the user’s existence in the database
and their permission to send and receive data and retrieves the user’s unique ID. If the
user lacks access, the request is rejected. If granted access, the WebRTCRouter, a class
responsible for handling signaling operations, forward the payload to the designated
receiver user, whose ID is included in the payload sent by the sender. A callback
function provides the sender with updates on the status of their request.

Upon logging in, each user receives data from the server and is assigned a unique
identifier (ID). They then establish an open connection with the Socket.io server,
enabling it to send data anytime to the user. As shown in Figure 6.7, users can send
data to the server, which forwards it to the intended recipient. This establishes a
connection allowing users to send data to one another through the signal channel.

Only the unique ID of the receiving user is needed to send data from User A to User
B. The payload sent by one user to the signal channel is a JSON object containing the
keys "token," "receiver," and "payload." The "token" key identifies the sender on the
server, the "receiver" key includes the unique ID of the user receiving the data, and the
"payload" key contains the data being sent. The server validates the signaling message
by verifying the sender’s user ID and checking if the user account is not blocked. If
both conditions are satisfied, the server forwards the payload to the intended recipient.

After connecting to the signal channel, users can exchange information to enable audio
or video streaming. Crew Active accomplishes this using WebRTC APIs, such as
RTCPeerConnection and MediaStream. The RTCPeerConnection API sets up client
communication, while the MediaStream API accesses the client device’s camera and
microphone, allowing clients to share audio and video streams.

Capter 6. Implementation and Results 45

Eni Veshi Bachelorarbeit

6.2.2 Acquiring User Media Streams for Video Conferencing with
MediaStream API

Crew Active app on the client side utilizes the MediaStream API to acquire user media
streams, facilitating user participation in video conferences through audio and video
devices, such as webcams and microphones.

Figure 6.8: MediaStream API Workflow for Accessing User Media Devices

To obtain the media stream, the application prompts the user for permission to access
their media devices via the getUserMedia() method. Once approval is granted, a
dialog box enables users to select the appropriate audio and video devices during the
conference.

A challenge encountered during the implementation process was related to React’s
component updates, which occur each time the state changes. It was crucial to ensure
the getUserMedia() method was called only once, as multiple calls could result in
the user’s camera and audio access persisting even after the conclusion of the video
conference.

To address this issue, the application was designed to ensure that the getUserMedia()
method is invoked only once, preventing unnecessary and potentially risky access to
the user’s media devices.

Capter 6. Implementation and Results 46

Eni Veshi Bachelorarbeit

After the user’s selection, the MediaStream API retrieves audio and video tracks
from the designated devices. These tracks are then enabled within a video tag in the
HTML file, thus permitting users to engage in the video conference using their chosen
instruments.

6.2.3 WebRTC Connection Establishment: Process and Optimization

Establishing a peer-to-peer connection using WebRTC, as illustrated in Figure 6.9,
involves two potential options for initiating the connection.

Figure 6.9: WebRTC Connection

Initially, a STUN server obtains the peer’s public IP address and port. However, a
TURN server becomes necessary when getting a peer’s public IP address and port
is impossible due to NAT restrictions. It is important to note that when a TURN
server is employed, the media stream is routed through the server, thus compromising

Capter 6. Implementation and Results 47

Eni Veshi Bachelorarbeit

the peer-to-peer connection. Usually using a STUN server is typically adequate for
establishing a connection.

Moreover, enhancements have been implemented within the system to boost the speed
and security of the connection process. Specifically, instead of transmitting each
ICE candidate to the other peer individually, all ICE candidates are gathered and
subsequently sent to the other peer. This approach facilitates a faster and more secure
connection establishment process. The call initiator generates ICE candidates after
creating the offer, while the receiver collects their ICE candidates after producing the
answer. Overall, these measures contribute to the improved efficiency and reliability of
the WebRTC connection process.

To establish a WebRTC connection between peer A and peer B, the following steps are
executed:

1. Peer A initiates the call by transmitting a request through the signal channel,
which subsequently forwards the request to peer B.

2. Upon receiving the call request from peer A, peer B accepts the call and responds
to peer A via the signal channel, indicating that the call has been accepted.

3. Both peers are required to grant access to their video or audio device and make a
selection. Once access is authorized, the local stream is displayed in the browser.

4. Following the establishment of the local stream, peer B sends a request to peer A,
indicating readiness to receive an offer SDP.

5. Peer A sends a "who am I" request to a STUN server, which replies with the
peer’s public IP address and port. This information enables peer A to know its
public IP address and port, even behind a NAT firewall.

6. Peer A forwards an offer SDP to peer B and starts the collection of ICE candidates.

7. Upon receiving the offer SDP from peer A, peer B generates an answer based
on the offer and returns it to peer A. After creating the answer SDP, peer B also
starts collecting its ICE candidates.

8. The signaling server facilitates the connection negotiation between peers A and
B by exchanging network and device capability information. Peer A sends its
ICE candidates to peer B, which reciprocates. The ICE candidates contain details
about the peer’s network and the various data travel paths between the two peers.
The WebRTC library leverages this information to determine the optimal data
travel path, ensuring a fast and efficient connection.

9. A peer-to-peer connection allows connected peers to directly transmit video,
audio, files, and other data types.

10. In cases where direct peer-to-peer communication between two peers (peer A
and peer B) is impossible due to firewalls or network restrictions, a TURN server
serves as a fallback solution. The TURN server functions as a relay between
the two peers, forwarding media streams between them. If a STUN server is

Capter 6. Implementation and Results 48

Eni Veshi Bachelorarbeit

accessible, it will enable direct peer-to-peer communication, making the TURN
server unnecessary. However, if the STUN server fails to establish a direct
connection, the TURN server provides a backup solution.

6.3 Applying Code Splitting in the Extended Crew Active
System

In implementing the Extended Crew Active System, code splitting and Progressive Web
Applications (PWAs) were combined to enhance the performance and user experience
of the web application.

Code splitting in React involves dividing the application code into smaller chunks,
which are loaded only when required. Only the code defining the home page and user
interface was loaded during the first render for the extended Crew Active System. The
remaining chunks, corresponding to other pages and features, were downloaded later
in the background without interrupting the user’s activity.

In addition to code splitting, the Extended Crew Active System also utilized the PWA’s
caching capabilities for its app shell. This allowed the initial chunks to be loaded from
cache storage, eliminating waiting for a server response. The combination of code
splitting and PWA caching significantly improved the performance of the Extended
Crew Active System.

As a best practice, code splitting was applied to every new route in the system. This
ensured the application code had a corresponding code chunk for each route, allowing
the system to load only the necessary code for each view or interaction. As a result,
the user experience was further improved, contributing to the overall success of the
extended Crew Active System implementation.

6.4 Testing

The advanced Crew Active web-based time recording system, incorporating a pro-
gressive web app (PWA) features integrated video streaming, was subjected to manual
testing to guarantee its proper operation and efficacy. This method was chosen to
assess the system’s performance from the standpoint of end-users.

Manual testing confirmed the system’s functionality, such as logging working hours,
monitoring employee attendance, producing reports, and streaming video via WebRTC.
Additionally, the PWA aspect of the system underwent manual testing to evaluate its
performance and responsiveness.

Besides manual testing, the Lighthouse tool examined the PWA’s performance. Light-
house is an open-source, automated tool intended to assist developers in enhancing the
quality of their web applications. It provided valuable insights into the performance,
accessibility, and best practices of the PWA implementation.

Capter 6. Implementation and Results 49

Eni Veshi Bachelorarbeit

As WebRTC testing is complex and limited tools are available for testing this technology,
end-users primarily conduct the testing manually. They assessed the video stream
quality, connection stability, and synchronization between video and audio streams.

Moreover, manual testing covered WebRTC data transfer protocols, error handling,
edge case management, and the system’s performance under various conditions. Since
WebRTC testing is still in its early stages, manual testing remains the most effective
method for evaluating WebRTC integration in the extended web-based time recording
system, which functions like a progressive web app.

Although the challenges associated with WebRTC testing, manual testing, and Light-
house have ensured that the system’s video streaming and PWA implementation are
reliable and meet the end users’ needs.

6.5 Discussion of the Technical Challenges and Solutions

Several technical challenges were encountered while developing the Crew Active web-
based time recording system, incorporating progressive web app (PWA) features an
integrated video streaming. This section discusses these challenges and the solutions
implemented to overcome them.

6.5.1 React Component Updates and getUserMedia()

One of the challenges faced during the implementation of the system was the behavior
of React components, which update whenever there is a change in the state. This
posed a problem when working with the getUserMedia() method. Multiple calls to
the process could lead to the user’s camera and audio access persisting even after the
video conference had ended.

To address this issue, the system was designed to ensure that the getUserMedia()
method was called only once. This solution prevented unnecessary and potentially
risky access to the user’s media devices, thus enhancing the security and reliability of
the application.

6.5.2 WebRTC Connection Process

The WebRTC connection process presented some complexities, particularly regarding
the collection and transmission of ICE candidates. To improve the speed and security
of the connection process, all ICE candidates were gathered before being sent to the
other peer instead of sending them individually.

This approach allowed for a more rapid and secure connection establishment process.
The call initiator generated ICE candidates after creating the offer, while the receiver
collected their ICE candidates after producing the answer. These measures contributed
to the improved efficiency and reliability of the WebRTC connection process.

Capter 6. Implementation and Results 50

Eni Veshi Bachelorarbeit

6.5.3 Manual Testing of the System

Given the complex nature of WebRTC technology and the limitations of available testing
tools, manual testing was primarily employed to evaluate the system’s performance.
End-users assessed various aspects of the system, including video stream quality,
connection stability, and synchronization between video and audio streams.

The PWA aspect of the system was also manually tested to ensure its responsiveness
and proper functionality. In addition, the Lighthouse tool was utilized to examine the
performance, accessibility, and best practices of the PWA implementation.

6.5.4 TURN Server as a Fallback Solution

In cases where direct peer-to-peer communication between peers was impossible due
to firewalls or network restrictions, a TURN server was implemented as a fallback
solution. The TURN server functioned as a peer relay, forwarding media streams
between them. Although the TURN server compromised the peer-to-peer connection
by routing the media stream through the server, it ensured that communication was
still possible in challenging network environments.

Developing the Crew Active web-based time recording system with PWA features and
integrated video streaming involved various technical challenges. However, through
careful consideration and implementation of practical solutions, these challenges were
successfully addressed, resulting in a reliable and secure system that meets the needs
of end users.

Capter 6. Implementation and Results 51

Eni Veshi Bachelorarbeit

6.6 Presentation of the results and evaluation of the sys-
tem’s performance

The extended Crew Active application has been designed to function as a Progressive
Web Application, which enables users to access it seamlessly via a web browser.
Upon navigating to the URL https://application.crew-active.de, users can install the
application by selecting the "Add to Home Screen" feature.

6.6.1 Progressive Web App Features: Add to Home Screen, Splash
Screen, and App Icon

Figure 6.10 shows the three key features of the implemented Progressive Web App
within the system. The PWA offers users a more engaging and native-like experience,
combining the best aspects of web and mobile applications.

Figure 6.10: Key Features of the Progressive Web App: Add to Home Screen, Splash Screen,
and App Icon

The first image in Figure 6.10 displays the "Add to Home Screen" feature, allowing
users to easily install the PWA on their devices. This feature provides users with quick
access to the application and enhances the user experience.

Capter 6. Implementation and Results 52

Eni Veshi Bachelorarbeit

The second image in Figure 6.10 highlights the splash screen that appears when users
launch the PWA. The splash screen serves as a visual placeholder while the application
loads, offering a more polished and professional appearance.

Lastly, the third image in Figure 6.10 shows the app icon for the installed PWA. The
app icon is visible on the user’s device, making it easily recognizable and providing a
more native-like experience.

6.6.2 Client-side Implementation: Network Status Indicator and Off-
line Operations

The client-side implementation features an icon button (1) that dynamically changes
its appearance based on the network status (online/offline). As depicted in Figure 6.11,
the device is currently offline, and the user has made some changes while disconnected
from the network.

Figure 6.11: Network Status Indicator and Offline Operations Interface with (1) Icon Button,
(2) Right-side Drawer, and (3) Crew Active Logo

The counter placed next to the network icon (1) represents the number of changes
made in the offline mode. Upon clicking the icon, the right-side drawer (2) is launched,
enabling users to view all the operations carried out in the offline mode. The user can
also delete all recorded operations or examine each item in the list to learn more about
the data that accompanies it.

The Crew Active logo (3), positioned in the top left corner of the interface, appears gray
when the user is offline and turns orange upon connecting to the network. Material UI
components and icons are utilized in the implementation to ensure the user interface

Capter 6. Implementation and Results 53

Eni Veshi Bachelorarbeit

is easy to use and navigate. This approach eliminates the need to build components
from scratch, saving time and resources.

6.6.3 Device Selection Dialog for Video Streaming

This section presents the implementation of a responsive dialog box that allows users
to select their preferred audio and video devices for a video streaming application
utilizing WebRTC, offering a seamless experience across various devices and screen
sizes.

Figure 6.12: Responsive Device Selection Dialog for WebRTC Video Streaming

The dialog box uses TailwindCSS to ensure compatibility with modern web browsers
and provide a visually appealing user interface. The dialog box contains two dropdown
menus for selecting the audio input device (microphone) and the video input device
(camera).

To populate the dropdown menus, the navigator.mediaDevices.getUserMedia()
method is used, as it ensures compatibility with the Safari browser by requiring
users to grant access to the devices before displaying them in the dropdown menus.

TailwindCSS utility classes create a responsive design that adapts the dialog box’s
appearance based on the screen size without needing CSS media queries. The dialog

Capter 6. Implementation and Results 54

Eni Veshi Bachelorarbeit

box opens in fullscreen mode on mobile devices, making it easy for users to interact
with the device selection options.

Upon testing, the device selection dialog successfully displays the available audio and
video devices, enabling users to make their selections. The responsive design ensures
an optimized user experience across various devices, with the dialog box adapting
its size and appearance according to the screen size. The fullscreen mode on mobile
devices provides a user-friendly interface for device selection.

6.6.4 Video Streaming Interface

This section presents the results of the developed video streaming interface within the
system. The interface has been designed to facilitate seamless user communication
using WebRTC technology, offering an engaging and user-friendly experience. The
following discussion and Figure 6.13 provide insights into the design and function-
ality of this interface, highlighting the key features and responsive design aspects
implemented.

Figure 6.13: Responsive Video Streaming Interface with Local and Remote User Streams
and Control Options

Figure 6.13 shows the result of the video streaming interface implemented using
WebRTC technology within the system. The figure displays a scenario where two users
engage in a video streaming session. The local user’s video stream is positioned on
the left side, while the remote user’s stream appears on the right.

Each video stream has the user’s name displayed at the bottom right corner, clearly
identifying both participants. The interface also includes control options at the bottom
of the screen, allowing users to mute or unmute their microphone, toggle their video
display on or off, and decline the video streaming session if necessary.

Capter 6. Implementation and Results 55

Eni Veshi Bachelorarbeit

The responsive design of the video streaming interface ensures that it adapts to fit any
screen size, providing an optimized experience for users on various devices, including
desktop computers, laptops, tablets, and smartphones.

6.7 Evaluating Crew Active System with Google Light-
house

The Crew Active system was evaluated using Google Lighthouse, a powerful tool for
analyzing the quality of web applications. The assessment focused on key performance
indicators, including performance, accessibility, SEO, and PWA capabilities.

Figure 6.14: Extended Crew Active System Google Lighthouse Evaluation Results

As illustrated in Figure 6.14, the Crew Active system achieved excellent scores in
the evaluation, with a 99% performance rating, 100% accessibility, and 100% SEO.
Furthermore, the PWA assessment shows a green checkmark, indicating that it is
installable and optimized.

The Crew Active system as shown in Figure 6.15 registers a service worker, is con-
figured for a custom splash screen, sets a theme color for the address bar, and includes
a <meta name="viewport"> tag with width or initial-scale. Additionally, it provides a
valid apple-touch-icon and a manifest with a maskable icon, ensuring compatibility
with various devices and platforms.

These results demonstrate the high quality and performance of the Crew Active system,
confirming its effectiveness as a web application and its compliance with best practices
for user experience, accessibility, and search engine optimization.

Capter 6. Implementation and Results 56

Eni Veshi Bachelorarbeit

Figure 6.15: Extended Crew Active System Google Lighthouse PWA Evaluation Results

Capter 6. Implementation and Results 57

Eni Veshi Bachelorarbeit

Chapter 7

Conclusion and Future Work

7.1 Summary of the main findings and contributions

The web-based time recording system Crew Active has been redesigned to meet
some functional requirements, offline capability, video streaming between users, a
user-friendly interface, and the transformation into a progressive web app. These
requirements were made possible using key technologies, including MERN stack, PWA
architecture, Redux Persist, WebRTC, Socket.IO, Material UI, Framer Motion, and
Tailwind CSS.

Using the MERN stack enables Full-Stack JavaScript Development, allowing using a
single programming language in front and backend. From a developer’s perspect-
ive, this approach will enable an easy switch between different parts of the whole
application. Nodejs and MongoDB will be in the backend, enabling high scalable
and performant, allowing the application to handle a large amount of data and traffic.
Express and React have a big community and are widely used, offering robust features
and better performance. Material UI is used to have one of the best user experiences for
each category of people. Socket.IO is an excellent library used as a signaling channel
that can be integrated everywhere on in Web in Android or IOS applications. Framer
Motion is used for different animations. Moreover, Tailwind CSS makes the application
responsive and handles CSS in a more structured way.

Using the React PWA template will make implementing the PWA architecture in the
system manageable, enabling offline capability. Redux-Persist is used to persist all
the states of Redux and dispatch the persisted state from IndexedDb to the Redux
state. This will allow the user to access the content when the user is offline and make
changes that will be synced when the user is online for the first time. At the same
time, WebRTC allows peer-to-peer video streaming between users.

Overall the extended Crew Active system provides a practical and cutting-edge time-
recording system solution that meets the need of the users. The thesis demonstrates the
power of the PWA architecture, WebRTC, and other critical technologies by improving
performance and offering new features for the system.

58

Eni Veshi Bachelorarbeit

7.2 Limitations

With the new features that have won after fulfilling the functional requirements, the
extended Crew Active system also has limitations and future potential for improving
the system.

Limitations:

• While the system can be used offline for creating and changing tasks, other
features require an internet connection, which can lead to limiting the system’s
accessibility and functionality in certain situations.

• The system has an administrator view responsible only for desktop and tablet
devices but not for mobile devices. This could limit the flexibility and accessibility
of the system, especially for administrators who needs to add new workers when
offline.

• The system requires significant resources to maintain and develop new features,
including time and costs.

• Video streaming functionality is only enabled on web base systems, not in the
IOS or Android application. This can limit the system functionality for the user
primarily using the mobile application.

• The system is all the time under development. It can make user adoption complex
or confusing.

Also that the extended Crew Active time recording system has limitations; addressing
this limitation and improving the system functionality will lead to a more effective
and impactful solution. The system could also be adapted to meet the needs of other
industries or use cases, providing a more versatile solution for organizations.

Capter 7. Conclusion and Future Work 59

Eni Veshi Bachelorarbeit

7.3 Suggestions for Further Improvements

The extended Crew Active system offers a range of features, but there is still enormous
potential for enhancements. Implementing additional improvements could help users
achieve their goals more efficiently and at lower costs.

Some suggested improvements include:

• Enhanced Offline Functionality: The current offline functionality can be fur-
ther improved by enabling other operations that typically require an internet
connection to be performed offline.

• Video Streaming in Native Applications: Crew Active can be enhanced by integ-
rating video streaming into a native app.

• Improved Security: Implementing two-factor authentication can increase security
by preventing unauthorized access to sensitive data.

• Integration of Artificial Intelligence: Incorporating artificial intelligence can
enable user recommendations and automate various processes.

• Multilingual Support: Expanding Crew Active to support multiple languages
can broaden its appeal to a wider user base.

• Screen Sharing and Multi-Participant Video Conferencing: Enabling screen shar-
ing and video conferences with multiple participants will improve the user
experience by allowing simultaneous collaboration with various participants.

• User Feedback Collection and Analysis: Gathering user feedback and experiences
will enable better system performance analysis and inform decisions for future
improvements.

By exploring these areas, the extended Crew Active system can undergo further
enhancements and introduce new features, providing a superior user experience and
catering to a broader range of needs.

Capter 7. Conclusion and Future Work 60

Eni Veshi Bachelorarbeit

List of Figures

2.1 Web Application Architecture . 4
2.2 Nested React Components . 5
2.3 React prop drilling . 6
2.4 Access Redux state from React components 7

3.1 Improving the user experience [70] . 12
3.2 Service worker background sync . 16
3.3 Service Worker Lifecycle and Transitions 17
3.4 Service worker compatibility [1] . 21
3.5 Trivago [70] saw a 67% increase in users who came back online to

continue browsing. 23
3.6 Installed users had a 2.5 times higher conversion rate [70] 23

4.1 Discovering Public IP and Port Using STUN Server [74] 26
4.2 Traversal Using Relays around NAT (TURN) and Its Role in WebRTC

Applications [74] . 27
4.3 WebRTC browser compatibility [1] . 28

5.1 Crew Active Technology Stack: MERN, React Native and React 31
5.2 A Visual Guide to Database Relationships 32
5.3 Calendar View with Network Status Indicator and Offline Operations

Drawer . 34
5.4 Calendar view icon clicked . 35
5.5 Incoming Call Interface in Crew Active Application 36
5.6 Video conference mockup . 37

6.1 The manifest file . 39
6.2 Client-side State Management with Redux Slices 40
6.3 Efficient Data Management: Persisting User Data and Caching Static Files 41
6.4 Offline Data Management and Synchronization Process 42
6.5 Creating a Task Offline and Syncing with Server 43
6.6 Real-Time Data Exchange between Clients Using Socket.io Signal Channel 44
6.7 Signal Channel Implementation for Secure and Efficient Data Exchange

Between Users . 45
6.8 MediaStream API Workflow for Accessing User Media Devices 46
6.9 WebRTC Connection . 47

61

Eni Veshi Bachelorarbeit

6.10 Key Features of the Progressive Web App: Add to Home Screen, Splash
Screen, and App Icon . 52

6.11 Network Status Indicator and Offline Operations Interface with (1) Icon
Button, (2) Right-side Drawer, and (3) Crew Active Logo 53

6.12 Responsive Device Selection Dialog for WebRTC Video Streaming . . . 54
6.13 Responsive Video Streaming Interface with Local and Remote User

Streams and Control Options . 55
6.14 Extended Crew Active System Google Lighthouse Evaluation Results . 56
6.15 Extended Crew Active System Google Lighthouse PWA Evaluation Results 57

LIST OF FIGURES 62

Eni Veshi Bachelorarbeit

Bibliography

[1] url: https://caniuse.com/?search=service%20workers (visited on 05/03/2023).
[2] A Study of WebRTC Security. url: https://webrtc-security.github.io/ (visited

on 25/02/2023).
[3] A Study of WebRTC Security. url: https://webrtc-security.github.io/#ref.5.
[4] Amazon Kinesis Video Streams WebRTC Developer Guide. url: https : / / docs .

aws.amazon.com/pdfs/kinesisvideostreams-webrtc-dg/latest/devguide/
kinesisvideo-dg.pdf (visited on 08/03/2023).

[5] Oahehc Andrew. ServiceWorker: Lifecycle, Update, and Notification. url: https://
medium.com/@oahehc/serviceworker-lifecycle-update-and-notification-
439c998e1e59 (visited on 28/02/2023).

[6] Ross Benes. With new mobile site, Forbes boosted impressions per session by 10 per-
cent. url: https://digiday.com/media/new-mobile-site-forbes-boosted-
impressions-per-session-10-percent/ (visited on 22/03/2023).

[7] caniuse. WebRTC Browser Compatibility. url: https://caniuse.com/?search=
webrtc (visited on 11/02/2023).

[8] Google Search Central. SEO for Single Page Apps. url: https://www.youtube.
com/watch?v=l-JWN2x_Na0&t=83s (visited on 08/03/2023).

[9] Cloudflare. What is Web Application Security? url: https://www.cloudflare.
com/learning/security/what-is-web-application-security/ (visited on
07/02/2023).

[10] Google Developers. Offline data. url: https://web.dev/learn/pwa/offline-
data/ (visited on 06/03/2023).

[11] Google Developers. Storage for Progressive Web Apps. url: https://developers.
google.com/web/fundamentals/instant-and-offline/web-storage (visited
on 06/03/2023).

[12] Google Developers. What are Progressive Web Apps? url: https://web.dev/what-
are-pwas/ (visited on 10/03/2023).

[13] MDN Web Docs. IndexedDB API. url: https://developer.mozilla.org/en-
US/docs/Web/API/IndexedDB_API (visited on 06/03/2023).

[14] MDN Web Docs. Service Worker API - Cache. url: https://developer.mozilla.
org/en-US/docs/Web/API/Cache (visited on 06/03/2023).

[15] MDN Web Docs. Web Storage API. url: https://developer.mozilla.org/en-
US/docs/Web/API/Web_Storage_API (visited on 06/03/2023).

[16] Facebook. url: https://github.com/facebook/react (visited on 10/03/2023).

63

https://caniuse.com/?search=service%20workers
https://webrtc-security.github.io/
https://webrtc-security.github.io/#ref.5
https://docs.aws.amazon.com/pdfs/kinesisvideostreams-webrtc-dg/latest/devguide/kinesisvideo-dg.pdf
https://docs.aws.amazon.com/pdfs/kinesisvideostreams-webrtc-dg/latest/devguide/kinesisvideo-dg.pdf
https://docs.aws.amazon.com/pdfs/kinesisvideostreams-webrtc-dg/latest/devguide/kinesisvideo-dg.pdf
https://medium.com/@oahehc/serviceworker-lifecycle-update-and-notification-439c998e1e59
https://medium.com/@oahehc/serviceworker-lifecycle-update-and-notification-439c998e1e59
https://medium.com/@oahehc/serviceworker-lifecycle-update-and-notification-439c998e1e59
https://digiday.com/media/new-mobile-site-forbes-boosted-impressions-per-session-10-percent/
https://digiday.com/media/new-mobile-site-forbes-boosted-impressions-per-session-10-percent/
https://caniuse.com/?search=webrtc
https://caniuse.com/?search=webrtc
https://www.youtube.com/watch?v=l-JWN2x_Na0&t=83s
https://www.youtube.com/watch?v=l-JWN2x_Na0&t=83s
https://www.cloudflare.com/learning/security/what-is-web-application-security/
https://www.cloudflare.com/learning/security/what-is-web-application-security/
https://web.dev/learn/pwa/offline-data/
https://web.dev/learn/pwa/offline-data/
https://developers.google.com/web/fundamentals/instant-and-offline/web-storage
https://developers.google.com/web/fundamentals/instant-and-offline/web-storage
https://web.dev/what-are-pwas/
https://web.dev/what-are-pwas/
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
https://developer.mozilla.org/en-US/docs/Web/API/Cache
https://developer.mozilla.org/en-US/docs/Web/API/Cache
https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API
https://github.com/facebook/react

Eni Veshi Bachelorarbeit

[17] Facebook. Making a Progressive Web App. url: https://create-react-app.dev/
docs/making-a-progressive-web-app/ (visited on 09/03/2023).

[18] Facebook. React Documentation. url: https://beta.reactjs.org/learn/your-
first-component (visited on 08/02/2023).

[19] Facebook. React the library for web and native user interfaces. url: https://react.
dev/ (visited on 10/03/2023).

[20] ForgeRock. Integrate a single-page app. url: https://backstage.forgerock.
com/docs/sdks/latest/blog/IntegrateyourSPAwithFIDC.html (visited on
08/03/2023).

[21] Vitaly Fredman. 10 Best Web Development Frameworks to Use in 2023. url: https:
//hackr.io/blog/web-development-frameworks (visited on 07/02/2023).

[22] Vitaly Fredman. Responsive Web Design: What It Is And How To Use It. url: https:
//www.smashingmagazine.com/2011/01/guidelines-for-responsive-web-
design/ (visited on 07/02/2023).

[23] Getting started with peer connections. url: https://webrtc.org/getting-started/
peer-connections (visited on 10/03/2023).

[24] Alexander S. Gillis. Native App. url: https://www.techtarget.com/searchsoftwarequality/
definition/native-application-native-app (visited on 10/03/2023).

[25] Handling Service Worker updates – how to keep the app updated and stay sane. url:
https://whatwebcando.today/articles/handling-service-worker-updates/
(visited on 25/02/2023).

[26] Dave Hudson. Progressive Web App Splash Screens. url: https://medium.com/
@applification/progressive-web-app-splash-screens-80340b45d210 (vis-
ited on 28/02/2023).

[27] Introduction to WebRTC protocols. url: https://developer.mozilla.org/en-
US/docs/Web/API/WebRTC_API/Protocols#nat (visited on 10/03/2023).

[28] Charithra Kariyawasam. Introduction to CSRF. url: https : / / medium . com /
@charithra/introduction-to-csrf-a329badfca49 (visited on 25/02/2023).

[29] Yuri Luchaninov. Using Node.js for Backend Web Development in 2023. url: https://
mobidev.biz/blog/node-js-for-backend-development (visited on 07/02/2023).

[30] Yurii Luchaninov. WebRTC App Development: Use Cases, Challenges, and the Future.
url: https://mobidev.biz/blog/webrtc-app-development-challenges-use-
cases-future (visited on 14/02/2023).

[31] MDM. How to make PWAs re-engageable using Notifications and Push. url: https:
//developer.mozilla.org/en- US/docs/Web/Progressive_web_apps/Re-
engageable_Notifications_Push (visited on 10/03/2023).

[32] Rahul Surendra Mishra. Progressive WEBAPP : Review. url: https://www.irjet.
net/archives/V3/i6/IRJET-V3I6568.pdf (visited on 28/02/2023).

[33] Kyle Mistele. XSS: What it is, how it works, and how to prevent it. url: https:
//medium.com/codelighthouse/xss-what-it-is-how-it-works-and-how-to-
prevent-it-454629e3a0da (visited on 25/02/2023).

[34] Monocubed. List of 10 Best Front end Frameworks to Use For Web Development. url:
https://www.monocubed.com/blog/best-front-end-frameworks/ (visited on
08/03/2023).

BIBLIOGRAPHY 64

https://create-react-app.dev/docs/making-a-progressive-web-app/
https://create-react-app.dev/docs/making-a-progressive-web-app/
https://beta.reactjs.org/learn/your-first-component
https://beta.reactjs.org/learn/your-first-component
https://react.dev/
https://react.dev/
https://backstage.forgerock.com/docs/sdks/latest/blog/IntegrateyourSPAwithFIDC.html
https://backstage.forgerock.com/docs/sdks/latest/blog/IntegrateyourSPAwithFIDC.html
https://hackr.io/blog/web-development-frameworks
https://hackr.io/blog/web-development-frameworks
https://www.smashingmagazine.com/2011/01/guidelines-for-responsive-web-design/
https://www.smashingmagazine.com/2011/01/guidelines-for-responsive-web-design/
https://www.smashingmagazine.com/2011/01/guidelines-for-responsive-web-design/
https://webrtc.org/getting-started/peer-connections
https://webrtc.org/getting-started/peer-connections
https://www.techtarget.com/searchsoftwarequality/definition/native-application-native-app
https://www.techtarget.com/searchsoftwarequality/definition/native-application-native-app
https://whatwebcando.today/articles/handling-service-worker-updates/
https://medium.com/@applification/progressive-web-app-splash-screens-80340b45d210
https://medium.com/@applification/progressive-web-app-splash-screens-80340b45d210
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Protocols#nat
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Protocols#nat
https://medium.com/@charithra/introduction-to-csrf-a329badfca49
https://medium.com/@charithra/introduction-to-csrf-a329badfca49
https://mobidev.biz/blog/node-js-for-backend-development
https://mobidev.biz/blog/node-js-for-backend-development
https://mobidev.biz/blog/webrtc-app-development-challenges-use-cases-future
https://mobidev.biz/blog/webrtc-app-development-challenges-use-cases-future
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps/Re-engageable_Notifications_Push
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps/Re-engageable_Notifications_Push
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps/Re-engageable_Notifications_Push
https://www.irjet.net/archives/V3/i6/IRJET-V3I6568.pdf
https://www.irjet.net/archives/V3/i6/IRJET-V3I6568.pdf
https://medium.com/codelighthouse/xss-what-it-is-how-it-works-and-how-to-prevent-it-454629e3a0da
https://medium.com/codelighthouse/xss-what-it-is-how-it-works-and-how-to-prevent-it-454629e3a0da
https://medium.com/codelighthouse/xss-what-it-is-how-it-works-and-how-to-prevent-it-454629e3a0da
https://www.monocubed.com/blog/best-front-end-frameworks/

Eni Veshi Bachelorarbeit

[35] mozilla. Service worker concepts and usage. url: https://developer.mozilla.org/
en-US/docs/Web/API/Service_Worker_API#service_worker_concepts_and_
usage (visited on 28/02/2023).

[36] mozilla. Using media queries. url: https://developer.mozilla.org/en-US/
docs/Web/CSS/Media_Queries/Using_media_queries (visited on 07/02/2023).

[37] Vipul Nema. Understanding service worker life cycle. url: https://medium.com/
@vipulnema2610/understanding-service-worker-life-cycle-b6580aa4eb50
(visited on 25/02/2023).

[38] Mozilla Developer Network. WebRTC API. url: https://developer.mozilla.
org/en-US/docs/Web/API/WebRTC_API (visited on 12/02/2023).

[39] Odunayo Ogungbure. Progressive Web Apps: Caching Strategies. url: https://dev.
to/mr_steelze/progressive-web-apps-caching-strategies-mf2 (visited on
28/02/2023).

[40] Addy Osmani. A Pinterest Progressive Web App Performance Case Study. url:
https://medium.com/dev- channel/a- pinterest- progressive- web- app-
performance-case-study-3bd6ed2e6154 (visited on 22/03/2023).

[41] Addy Osmani. A Tinder Progressive Web App Performance Case Study. url: https:
//medium.com/@addyosmani/a-tinder-progressive-web-app-performance-
case-study-78919d98ece0 (visited on 22/03/2023).

[42] Addy Osmani. Instant Loading Web Apps with an Application Shell Architecture. url:
https://developer.chrome.com/blog/app-shell/ (visited on 28/02/2023).

[43] Yuvraj Pandey. Frontend Performance Optimization with Code Splitting. url: https:
//yuvrajpy.medium.com/frontend-performance-optimization-with-code-
splitting-using-react-lazy-suspense-1e0d1a85e32c (visited on 06/03/2023).

[44] Vatsal Patel. An Ultimate Guide for Mobile App Development. url: https://medium.
com/nerd- for- tech/an- ultimate- guide- for- mobile- app- development-
ff3c17ece87a (visited on 10/03/2023).

[45] Tuomas Pekkanen. PACKAGING COMPLEX WEB CLIENT IN EASILY EMBED-
DABLE SOLUTION. url: https://trepo.tuni.fi/bitstream/handle/10024/
140638/PekkanenTuomas.pdf (visited on 09/03/2023).

[46] Progressive Web Apps. url: https://web.dev/learn/pwa/progressive-web-
apps/ (visited on 01/03/2023).

[47] Redux Documentation. url: https://redux.js.org/introduction/getting-
started (visited on 08/02/2023).

[48] Redux Fundamentals, Part 2: Concepts and Data Flow. url: https://redux.js.org/
tutorials/fundamentals/part-2-concepts-data-flow#reducers (visited on
08/02/2023).

[49] Grand View Research. Web Real-Time Communication Market Size. url: https://
www.grandviewresearch.com/industry-analysis/web-real-time-communication-
market (visited on 11/02/2023).

[50] rt2zz. redux-persist. 2015. url: https://github.com/rt2zz/redux- persist
(visited on 09/03/2023).

[51] Jamie Maria Schouren. Web App Manifests — A Guide to get your website on a
user’s Home Screen. url: https://medium.com/deity-io/web-app-manifests-

BIBLIOGRAPHY 65

https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API#service_worker_concepts_and_usage
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API#service_worker_concepts_and_usage
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API#service_worker_concepts_and_usage
https://developer.mozilla.org/en-US/docs/Web/CSS/Media_Queries/Using_media_queries
https://developer.mozilla.org/en-US/docs/Web/CSS/Media_Queries/Using_media_queries
https://medium.com/@vipulnema2610/understanding-service-worker-life-cycle-b6580aa4eb50
https://medium.com/@vipulnema2610/understanding-service-worker-life-cycle-b6580aa4eb50
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API
https://dev.to/mr_steelze/progressive-web-apps-caching-strategies-mf2
https://dev.to/mr_steelze/progressive-web-apps-caching-strategies-mf2
https://medium.com/dev-channel/a-pinterest-progressive-web-app-performance-case-study-3bd6ed2e6154
https://medium.com/dev-channel/a-pinterest-progressive-web-app-performance-case-study-3bd6ed2e6154
https://medium.com/@addyosmani/a-tinder-progressive-web-app-performance-case-study-78919d98ece0
https://medium.com/@addyosmani/a-tinder-progressive-web-app-performance-case-study-78919d98ece0
https://medium.com/@addyosmani/a-tinder-progressive-web-app-performance-case-study-78919d98ece0
https://developer.chrome.com/blog/app-shell/
https://yuvrajpy.medium.com/frontend-performance-optimization-with-code-splitting-using-react-lazy-suspense-1e0d1a85e32c
https://yuvrajpy.medium.com/frontend-performance-optimization-with-code-splitting-using-react-lazy-suspense-1e0d1a85e32c
https://yuvrajpy.medium.com/frontend-performance-optimization-with-code-splitting-using-react-lazy-suspense-1e0d1a85e32c
https://medium.com/nerd-for-tech/an-ultimate-guide-for-mobile-app-development-ff3c17ece87a
https://medium.com/nerd-for-tech/an-ultimate-guide-for-mobile-app-development-ff3c17ece87a
https://medium.com/nerd-for-tech/an-ultimate-guide-for-mobile-app-development-ff3c17ece87a
https://trepo.tuni.fi/bitstream/handle/10024/140638/PekkanenTuomas.pdf
https://trepo.tuni.fi/bitstream/handle/10024/140638/PekkanenTuomas.pdf
https://web.dev/learn/pwa/progressive-web-apps/
https://web.dev/learn/pwa/progressive-web-apps/
https://redux.js.org/introduction/getting-started
https://redux.js.org/introduction/getting-started
https://redux.js.org/tutorials/fundamentals/part-2-concepts-data-flow#reducers
https://redux.js.org/tutorials/fundamentals/part-2-concepts-data-flow#reducers
https://www.grandviewresearch.com/industry-analysis/web-real-time-communication-market
https://www.grandviewresearch.com/industry-analysis/web-real-time-communication-market
https://www.grandviewresearch.com/industry-analysis/web-real-time-communication-market
https://github.com/rt2zz/redux-persist
https://medium.com/deity-io/web-app-manifests-a-guide-to-get-your-website-on-a-users-home-screen-6baf108538e7
https://medium.com/deity-io/web-app-manifests-a-guide-to-get-your-website-on-a-users-home-screen-6baf108538e7

Eni Veshi Bachelorarbeit

a-guide-to-get-your-website-on-a-users-home-screen-6baf108538e7
(visited on 06/03/2023).

[52] Amazon Web Services. Amazon S3. url: https://aws.amazon.com/s3/ (visited
on 06/03/2023).

[53] Pawel Skolski. Single-page application vs. multiple-page application. url: https://
neoteric.eu/blog/single-page-application-vs-multiple-page-application/
(visited on 07/02/2023).

[54] Tree Web Solutions. SPAs and Server Side Rendering: A Must, or a Maybe? url:
https://treewebsolutions.com/articles/spas-and-server-side-rendering-
a-must-or-a-maybe-55 (visited on 08/03/2023).

[55] Kavirajan ST. What is WebRTC and How to Setup STUN/TURN Server for WebRTC
Communication? url: https://medium.com/av-transcode/what-is-webrtc-
and-how-to-setup-stun-turn-server-for-webrtc-communication-63314728b9d0
(visited on 10/03/2023).

[56] stackpath. WHAT IS A WEB APPLICATION? url: https://www.stackpath.com/
edge-academy/what-is-a-web-application/ (visited on 07/02/2023).

[57] tailwindCSS. Responsive Design. url: https://tailwindcss.com/docs/responsive-
design (visited on 06/03/2023).

[58] The service worker lifecycle. url: https://web.dev/service-worker-lifecycle/
(visited on 25/02/2023).

[59] The Ultimate Guide To Progressive Web Apps in 2023 – with 50 PWA Examples. url:
https://www.mobiloud.com/blog/progressive-web-app-examples (visited on
09/03/2023).

[60] thinkwithgoogle.com. The next billion users: trivago embrace Progressive Web Apps
as the future of mobile. url: https : / / www . thinkwithgoogle . com / intl / en -
154/marketing-strategies/app-and-mobile/trivago-embrace-progressive-
web-apps-as-the-future-of-mobile/ (visited on 10/03/2023).

[61] Joe Tuan. Progressive Web Apps vs. Native Apps in 2023: Pros And Cons. url: https:
//topflightapps.com/ideas/native-vs-progressive-web-app/ (visited on
16/02/2023).

[62] Using WebRTC data channels. url: https://developer.mozilla.org/en-US/
docs/Web/API/WebRTC_API/Using_data_channels (visited on 08/03/2023).

[63] Anton Venema. Diagnosing Network Problems with WebRTC Applications. url:
https://www.liveswitch.io/blog/diagnosing- network- problems- with-
webrtc-applications (visited on 10/03/2023).

[64] Eni Veshi. Digitale Zeiterfassung. url: https://www.crew-active.de/ (visited on
09/03/2023).

[65] Eni Veshi. Zeiterfassung für Mitarbeiter. url: https://docs.crew-active.de/
(visited on 09/03/2023).

[66] w3c. Web Application Manifest. url: https://w3c.github.io/manifest/ (visited
on 28/02/2023).

[67] Web App Manifest. url: https:/ /www.w3 .org/TR /2016/WD - appmanifest-
20160315/ (visited on 09/03/2023).

[68] web.dev. Alibaba. url: https://web.dev/alibaba/ (visited on 10/03/2023).

BIBLIOGRAPHY 66

https://medium.com/deity-io/web-app-manifests-a-guide-to-get-your-website-on-a-users-home-screen-6baf108538e7
https://medium.com/deity-io/web-app-manifests-a-guide-to-get-your-website-on-a-users-home-screen-6baf108538e7
https://medium.com/deity-io/web-app-manifests-a-guide-to-get-your-website-on-a-users-home-screen-6baf108538e7
https://aws.amazon.com/s3/
https://neoteric.eu/blog/single-page-application-vs-multiple-page-application/
https://neoteric.eu/blog/single-page-application-vs-multiple-page-application/
https://treewebsolutions.com/articles/spas-and-server-side-rendering-a-must-or-a-maybe-55
https://treewebsolutions.com/articles/spas-and-server-side-rendering-a-must-or-a-maybe-55
https://medium.com/av-transcode/what-is-webrtc-and-how-to-setup-stun-turn-server-for-webrtc-communication-63314728b9d0
https://medium.com/av-transcode/what-is-webrtc-and-how-to-setup-stun-turn-server-for-webrtc-communication-63314728b9d0
https://www.stackpath.com/edge-academy/what-is-a-web-application/
https://www.stackpath.com/edge-academy/what-is-a-web-application/
https://tailwindcss.com/docs/responsive-design
https://tailwindcss.com/docs/responsive-design
https://web.dev/service-worker-lifecycle/
https://www.mobiloud.com/blog/progressive-web-app-examples
https://www.thinkwithgoogle.com/intl/en-154/marketing-strategies/app-and-mobile/trivago-embrace-progressive-web-apps-as-the-future-of-mobile/
https://www.thinkwithgoogle.com/intl/en-154/marketing-strategies/app-and-mobile/trivago-embrace-progressive-web-apps-as-the-future-of-mobile/
https://www.thinkwithgoogle.com/intl/en-154/marketing-strategies/app-and-mobile/trivago-embrace-progressive-web-apps-as-the-future-of-mobile/
https://topflightapps.com/ideas/native-vs-progressive-web-app/
https://topflightapps.com/ideas/native-vs-progressive-web-app/
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Using_data_channels
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Using_data_channels
https://www.liveswitch.io/blog/diagnosing-network-problems-with-webrtc-applications
https://www.liveswitch.io/blog/diagnosing-network-problems-with-webrtc-applications
https://www.crew-active.de/
https://docs.crew-active.de/
https://w3c.github.io/manifest/
https://www.w3.org/TR/2016/WD-appmanifest-20160315/
https://www.w3.org/TR/2016/WD-appmanifest-20160315/
https://web.dev/alibaba/

Eni Veshi Bachelorarbeit

[69] web.dev. Progressive Web App Capabilities. url: https://web.dev/learn/pwa/
capabilities/ (visited on 20/02/2023).

[70] web.dev. PWAs leverage modern web capabilities. url: https://web.dev/drive-
business-success/ (visited on 10/03/2023).

[71] WebRTC. url: https://webrtc.org/ (visited on 10/03/2023).
[72] WebRTC. url: https://github.com/webrtc (visited on 10/03/2023).
[73] WebRTC adapter. url: https://github.com/webrtcHacks/adapter (visited on

10/03/2023).
[74] WebRTC TURN server: Everything you need to know. url: https://www.100ms.

live/blog/webrtc-turn-server (visited on 08/03/2023).
[75] WebRTC: Real-Time Communication in Browsers. W3C. url: https://www.w3.org/

TR/webrtc/ (visited on 10/03/2023).
[76] Weekendesk crée une expérience ultra-fluide en réconciliant site web et app native. url:

https://www.thinkwithgoogle.com/_qs/documents/8971/Weekendesk_PWA_-
_EXTERNAL_CASE_STUDY.pdf (visited on 10/03/2023).

[77] What is a data channel? url: https://developer.mozilla.org/en-US/docs/
Games/Techniques/WebRTC_data_channels (visited on 08/03/2023).

[78] What is WebRTC? url: https://bloggeek.me/what-is-webrtc/ (visited on
02/03/2023).

[79] whatpwacando.today. What PWA Can Do Today. url: https://whatpwacando.
today/ (visited on 18/02/2023).

[80] Simon Wicki. PWA: Create a “New Update Available” Notification using Service
Workers. url: https://medium.com/progressive-web-apps/pwa-create-a-
new-update-available-notification-using-service-workers-18be9168d717
(visited on 28/02/2023).

[81] Workbox. url: https://web.dev/learn/pwa/workbox/ (visited on 07/03/2023).
[82] Workbox usage. url: https://almanac.httparchive.org/en/2021/pwa#workbox-

usage (visited on 07/03/2023).

BIBLIOGRAPHY 67

https://web.dev/learn/pwa/capabilities/
https://web.dev/learn/pwa/capabilities/
https://web.dev/drive-business-success/
https://web.dev/drive-business-success/
https://webrtc.org/
https://github.com/webrtc
https://github.com/webrtcHacks/adapter
https://www.100ms.live/blog/webrtc-turn-server
https://www.100ms.live/blog/webrtc-turn-server
https://www.w3.org/TR/webrtc/
https://www.w3.org/TR/webrtc/
https://www.thinkwithgoogle.com/_qs/documents/8971/Weekendesk_PWA_-_EXTERNAL_CASE_STUDY.pdf
https://www.thinkwithgoogle.com/_qs/documents/8971/Weekendesk_PWA_-_EXTERNAL_CASE_STUDY.pdf
https://developer.mozilla.org/en-US/docs/Games/Techniques/WebRTC_data_channels
https://developer.mozilla.org/en-US/docs/Games/Techniques/WebRTC_data_channels
https://bloggeek.me/what-is-webrtc/
https://whatpwacando.today/
https://whatpwacando.today/
https://medium.com/progressive-web-apps/pwa-create-a-new-update-available-notification-using-service-workers-18be9168d717
https://medium.com/progressive-web-apps/pwa-create-a-new-update-available-notification-using-service-workers-18be9168d717
https://web.dev/learn/pwa/workbox/
https://almanac.httparchive.org/en/2021/pwa#workbox-usage
https://almanac.httparchive.org/en/2021/pwa#workbox-usage

	Introduction
	Background
	Motivation
	Objective of the bachelor thesis

	Literature Review
	Web Application
	Single Page Application
	Exploring React: Components, Performance, and State Management
	Redux
	Progressive Web Apps
	Native Application
	Video Streaming

	Progressive Web App
	How Progressive Web Apps Work: A Step-by-Step Guide
	Ways to Access Progressive Web Apps
	Fast Loading Speed
	Offline Functionality
	Add to Home Screen
	Push Notifications
	Splash Screen
	Responsive Design
	Access to Device Features
	Security
	Discoverability
	Service workers
	Service Worker Stages
	Overcoming the Challenges of Updating Service Workers
	Informing Users of Service Worker Updates
	App Shell Architecture
	Manifest File
	Caching Strategy
	Browser Compatibility: Challenges and Solutions
	Workbox
	Storage Solutions for Progressive Web Apps: Choosing the Right Option
	Business Impact

	WebRTC
	Key Features and Benefits
	Data Channels
	Network Address Translation
	ICE
	STUN
	Security
	TURN
	Limitations and Compatibility Issues

	Requirements and app design
	A brief overview of the Crew Active time recording system and its existing features
	Requirements
	Technology Stack
	Database Design
	Calendar View Design with Offline Functionality and Network Status Integration
	Incoming Call Handling and User Interface
	Video Conference User Experience and Interface Design

	Implementation and Results
	Conversion to a Progressive Web App
	Register a Service Worker
	Cache Files with Service Worker
	Manifest File
	Offline Functionality
	Offline User Activity Synchronization with the Crew Active Server

	Video Streaming
	Signal Channel
	Acquiring User Media Streams for Video Conferencing with MediaStream API
	WebRTC Connection Establishment: Process and Optimization

	Applying Code Splitting in the Extended Crew Active System
	Testing
	Discussion of the Technical Challenges and Solutions
	React Component Updates and getUserMedia()
	WebRTC Connection Process
	Manual Testing of the System
	TURN Server as a Fallback Solution

	Presentation of the results and evaluation of the system's performance
	Progressive Web App Features: Add to Home Screen, Splash Screen, and App Icon
	Client-side Implementation: Network Status Indicator and Offline Operations
	Device Selection Dialog for Video Streaming
	Video Streaming Interface

	Evaluating Crew Active System with Google Lighthouse

	Conclusion and Future Work
	Summary of the main findings and contributions
	Limitations
	Suggestions for Further Improvements

	Figures

