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Titel:

LonqAPI: Entwurf und Implementierung einer DaaS Schnittstelle für lang laufende
Abfragen in einem AWS Cloud IIoT Data Layer

Abstrakt:

IoT Technologien erzeugen große Mengen an Daten, die zur Verbesserung von Produk-
ten und Diensten genutzt werden können. Cloud Computing und Anbieter wie AWS
sind entscheidend, um entstehende Big Data Herausforderungen zu lösen. BHS Cor-
rugated, ein führender Anbieter von Lösungen für die Wellpappenindustrie, migriert
seine On-Premise Datenmanagement-Infrastruktur in die Cloud, um von den in den
Produktionslinien der Kunden gesammelten Daten zu profitieren. Um jedoch Erkennt-
nisse aus den gespeicherten Daten zu gewinnen, müssen diese zugänglich sein. Derzeit
fehlt BHS eine Lösung, um Daten basierend auf lang laufenden Abfragen konsistent
bereitzustellen.

In dieser Arbeit wird die LonqAPI vorgestellt, ein Data-as-a-Service Schnittstellenpro-
totyp für lang laufende Abfragen auf dem Data Layer von BHS in der AWS Cloud.
Der Schwerpunkt liegt dabei auf Skalierbarkeit, Effizienz und Erweiterbarkeit, um lang
laufende Abfragen und Datenquellen weiterzuentwickeln oder zu ändern. Anhand
einer Literaturrecherche werden Technologien, Architekturen und Muster für den En-
twurf und die Implementierung der LonqAPI identifiziert und verglichen. Das Resultat
ist eine REST API, die das Polling Muster für asynchrone Client-Server Kommunikation
implementiert und AWS Services wie API Gateway und Lambda für die Schnittstelle
und Step Functions State Machines für die entkoppelte Abfrageausführung verwendet.
Zur Veranschaulichung der generischen Lösung ist eine Athena-Abfrage als Beispiel
für eine lang laufende Abfrage integriert.

Schlüsselwörter: Verarbeitung lang laufender Abfragen, Data-as-a-Service Schnittstelle,
asynchrone Client-Server Kommunikation, RESTAPI PollingMuster, AWS cloud-native
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Title:

LonqAPI: Design and Implementation of a DaaS Interface for long-running Queries in
an AWS Cloud IIoT Data Layer

Abstract:

IoT technologies generate large amounts of data that can be used to improve products
and services. Cloud computing and providers like AWS are crucial enablers to solve
emerging big data challenges. BHS Corrugated, a leading provider of solutions for the
corrugated board industry, is migrating its on-premise data management infrastructure
to the cloud to benefit from data collected in customer production lines. However, to
gain knowledge from stored data, it must be accessible. Currently, BHS is missing a
solution to provide data based on long-running queries in a consistent way.

This thesis presents the LonqAPI, a Data-as-a-Service interface prototype for long-
running queries on the Data Layer of BHS in the AWS Cloud. It focuses on scalability,
efficiency, and extensibility to further or changing long-running queries and data sources.
Through literature research, technologies, architectures, and patterns to design and
implement the LonqAPI are identified and compared. The outcome is a REST API
implementing the polling pattern for asynchronous client-server communication using
AWS services like API Gateway and Lambda for the interface and Step Functions state
machines for decoupled query execution. To illustrate the generic solution, an Athena
query is integrated as a long-running query example.

KeyWords: long-running query processing, data-as-a-service interface, asynchronous
client-server communication, REST API polling pattern, AWS cloud-native

v



Simon Kleber Bachelor Thesis

Contents

1 Introduction and Context 1
1.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Research Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Research Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Fundamentals 4
2.1 Big Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Industrial Internet of Things . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3.1 Service Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3.2 Cloud-native Concepts . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3.3 Amazon Web Services . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Data as a Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 Web Service APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.6 Long-running Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 State of the Art 8
3.1 Asynchronous Communication . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1.1 Asynchronous Communication Correlation . . . . . . . . . . . . . 9
3.1.2 Client-Server Asynchronous Communication Patterns . . . . . . 10

3.2 Query Request Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.1 Decoupled Invocation Handling . . . . . . . . . . . . . . . . . . . 11
3.2.2 Query Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.3 Large Query Result Handling . . . . . . . . . . . . . . . . . . . . . 13

3.3 API Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.1 REST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.2 WebSocket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.3 GraphQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.4 gRPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Case Example 17
4.1 Introduction to BHS Corrugated . . . . . . . . . . . . . . . . . . . . . . . 17

4.1.1 Relevance of Big Data at BHS Corrugated . . . . . . . . . . . . . . 17
4.1.2 Relevance of IIoT at BHS Corrugated . . . . . . . . . . . . . . . . 18

4.2 Data Layer at BHS Corrugated . . . . . . . . . . . . . . . . . . . . . . . . 18

vi



Simon Kleber Bachelor Thesis

4.2.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.3 Relevant Queries and Data Formats . . . . . . . . . . . . . . . . . 19

4.3 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3.1 Functional Requirements . . . . . . . . . . . . . . . . . . . . . . . 20
4.3.2 Non-Functional Requirements . . . . . . . . . . . . . . . . . . . . 22

5 LonqAPI Architecture 23
5.1 Architectural Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.1.1 API Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.1.2 Asynchronous Communication Pattern for REST . . . . . . . . . 24

5.2 Architecture Components Overview . . . . . . . . . . . . . . . . . . . . . 24
5.3 AWS Service Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.3.1 REST API Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3.2 Query Result Storage Service . . . . . . . . . . . . . . . . . . . . . 26
5.3.3 Query Status Storage Service . . . . . . . . . . . . . . . . . . . . . 27
5.3.4 Query Execution Service . . . . . . . . . . . . . . . . . . . . . . . . 27

5.4 Architecture Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 Design Decisions 33
6.1 REST API Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.1.1 REST Polling Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.1.2 RESTful API Design Practices . . . . . . . . . . . . . . . . . . . . . 34
6.1.3 LonqAPI REST Endpoints . . . . . . . . . . . . . . . . . . . . . . . 35

6.2 AWS Lambda Request Handling . . . . . . . . . . . . . . . . . . . . . . . 37
6.2.1 Monolithic vs. single-purpose Lambda Function . . . . . . . . . . 37
6.2.2 REST API Python Framework . . . . . . . . . . . . . . . . . . . . . 39

6.3 AWS State Machine Query Handling . . . . . . . . . . . . . . . . . . . . . 42
6.3.1 State Machine Design . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.3.2 Data Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.3.3 Result Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7 Implementation 45
7.1 LonqAPI Monorepo Subprojects . . . . . . . . . . . . . . . . . . . . . . . 45

7.1.1 mdl-lonq Subproject . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.1.2 mdl-daas-history Subproject . . . . . . . . . . . . . . . . . . . . . 46

7.2 mdl-lonq Library Implementation . . . . . . . . . . . . . . . . . . . . . . 47
7.2.1 State Machine CDK Constructs . . . . . . . . . . . . . . . . . . . . 47
7.2.2 Generic Query Processor Lambda Handler . . . . . . . . . . . . . 48

7.3 Long-running Query Implementation Process . . . . . . . . . . . . . . . 49
7.3.1 Process Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.3.2 Athena POM Query Implementation . . . . . . . . . . . . . . . . . 50

7.4 mdl-daas-history Project Implementation . . . . . . . . . . . . . . . . . . 51
7.4.1 DaaS History API Infrastructure Stack . . . . . . . . . . . . . . . . 52
7.4.2 REST API Lambda Function . . . . . . . . . . . . . . . . . . . . . . 53

CONTENTS vii



Simon Kleber Bachelor Thesis

7.5 Lambda Session Management . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

8 Evaluation 56
8.1 API Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

8.1.1 Test Client Implementation . . . . . . . . . . . . . . . . . . . . . . 56
8.1.2 API Performance Evaluation . . . . . . . . . . . . . . . . . . . . . 57

8.2 Query Execution Infrastructure Efficiency Evaluation . . . . . . . . . . . 58
8.2.1 Query Execution Time Overhead . . . . . . . . . . . . . . . . . . . 58
8.2.2 Query Cost Overhead . . . . . . . . . . . . . . . . . . . . . . . . . 59

8.3 Extensibility Evaluation Example . . . . . . . . . . . . . . . . . . . . . . . 62
8.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

9 Summary and Future Work 66
9.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Bibliography 68

List of Figures 76

List of Tables 77

A LonqAPI 78

CONTENTS viii



Simon Kleber Bachelor Thesis

List of Acronyms

API Application Programming Interface
ARN Amazon Resource Name
ASGI Asynchronous Server Gateway Interface
AWS Amazon Web Services
AWS CDK AWS Cloud Development Kit
BHS BHS Corrugated Maschinen- und Anlagenbau GmbH
CRUD Create, Read, Update, Delete
CSV Comma-Separated Values
CTAS Create Table As
DaaS Data as a Service
DML Data Manipulation Language
EC2 Elastic Compute Cloud
ECS Elastic Container Service
EFS Elastic File System
EKS Elastic Kubernetes Service
ELB Elastic Load Balancing
ETL Extract, Transform, Load
GraphQL Graph Query Language
gRPC gRPC Remote Procedure Calls
HATEOAS Hypermedia as the Engine of Application State
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
HTTPR Hypertext Transfer Protocol Reliable
HTTPS Hypertext Transfer Protocol Secure
IaaS Infrastructure as a Service
IaC Infrastructure as Code
IAM Identity and Access Management
IIoT Industrial Internet of Things
IoT Internet of Things
JSON JavaScript Object Notation
KMS Key Management Service
MQTT Message Queuing Telemetry Transport
NIST National Institute of Standards and Technology
NoSQL Not only SQL
PaaS Platform as a Service

ix



Simon Kleber Bachelor Thesis

PDF Portable Document Format
POM Point of Measurement
RDS Relational Database Service
REST Representational State Transfer
RPC Remote Procedure Call
S3 Simple Storage Service
SaaS Software as a Service
SDK Software Development Kit
SOAP Simple Object Access Protocol
SQL Structured Query Language
SSL Secure Sockets Layer
TCP Transmission Control Protocol
TLS Transport Layer Security
URI Uniform Resource Identifier
URL Uniform Resource Locator
UUID Universally Unique Identifier
WSGI Web Server Gateway Interface
XML Extensible Markup Language
YAML YAML Ain’t Markup Language

CONTENTS x



Simon Kleber Bachelor Thesis

Chapter 1

Introduction and Context

Nowadays, the Internet of Things (IoT) is a ubiquitous technology. With approximately
15.14 billion devices in 2023, it impacts not only our technological world but also how
we live and work. Still, its number is expected to increase to more than 29 billion by
2030 [1]. IoT affects various sectors and use cases, from healthcare and agriculture to
smart cities and manufacturing [2]. As a subset, Industrial Internet of Things (IIoT) aims
to link digital and physical worlds in the context of industrial applications. By enabling
data-driven decision-making, remote monitoring, and predictive maintenance, IIoT
optimizes processes, increases efficiency, and ultimately improves the bottom line [3].

Along with the promises of IIoT come challenges like security, interoperability, data
storage, and data analytics [3]. The volume of data generated can overwhelm existing
infrastructure and require new approaches to data storage and processing [4, p. 24].
Cloud technologies are a crucial enabler to solve the challenges of big data generated by
IIoT [5, pp. 22-29].

Facing these challenges, BHS Corrugated Maschinen- und Anlagenbau GmbH (BHS), a
leading provider of solutions for the corrugated board industry [6], is developing prod-
ucts and services to help their customers benefit from data generated in their production
lines. BHS recognized the potential of cloud computing and started migrating its on-
premise data management infrastructure to the Amazon Web Services (AWS) cloud in
order to build a solid foundation for data-driven innovations and business decisions.
However, as stated by Begoli and Horey [7], one principle of effective knowledge dis-
covery on big data is to make data accessible by exposing an Application Programming
Interface (API). In order to utilize its full data potential, BHS requires such an interface
in its cloud environment. In particular, no solution is available to obtain data from
queries that take a long time to execute. Such data access enables numerous use cases,
including applications and platforms, data analytics for product improvement, and data
as a product usable by customers. To address this, a flexible and extensible solution in
the form of a Data as a Service (DaaS) interface must be developed. This thesis aims to
facilitate seamless data access and utilization, explicitly targeting long-running queries
at the Data Layer at BHS.

1
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1.1 Research Questions

Based on fundamental concepts and definitions described in Chapter 2, this research
faces the following problems and aims to answer the associated research questions.

Problem Statement: It is hard to provide data based on long-running queries in a
big data environment in a consistent DaaS interface. This challenge is compounded
by the multitude of available AWS Cloud services, making it difficult to select and
configure suitable infrastructure to efficiently address long-running queries in the
cloud. Each storage service has its own data formats, access methods, and performance
characteristics. The more data sources are included, the more complex it becomes to
implement a flexible and extensible interface. Flexible and extendable in this context
means that existing queries can be easily adapted, new queries, data sources, or other
services can be integrated, and results are processed and provided in different formats.
Moreover, a diverse, changing, and expanding data landscape adds complexity to
developing a uniform system handling long-running queries.

Research Question 1 (RQ1): Which technologies and architectures are available to
design and implement a DaaS interface providing data from long-running queries in
the AWS Cloud?

Research Question 2 (RQ2): How can long-running queries be efficiently processed to
provide data based on Athena queries for a DaaS interface using AWS Cloud services?

Research Question 3 (RQ3): How can the system be designed to be flexible and extensi-
ble to further or changing long-running queries and data sources?

1.2 Research Objective

The objective of this thesis is to develop a consistent DaaS interface for long-running
queries on a Data Layer in the AWSCloud. The primary goal is to explore challenges and
solutions associated with integrating a DaaS approach for data from different sources
in a big data environment.

The research aims to achieve effective design and implementation in terms of interface
technology and infrastructure architecture. The focus is on developing a reusable and
expandable framework concept that can flexibly be applied to comparable scenarios in
the AWS Cloud.

By utilizing the Data Layer at BHS as an illustrative example, the research findings will
benefit both BHS and other organizations. As a result, these insights will help establish
a comprehensive understanding of practical strategies and enable them to adapt and
extend the cloud-native DaaS solution concept to meet the current and future needs of
internal and external customers.

Cloud computing also poses challenges for security, as presented by Pakmehr et al. [8].
However, neither security aspects nor query optimization are in the scope of this re-
search.

Chapter 1. Introduction and Context 2
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1.3 Research Concept

The research concept entails exploring state-of-the-art literature to identify various
technologies, architectures, and design patterns. This exploration is guided not only by
the requirements and user stories of the case example at BHS but also encompasses a
broader research aspect to answer the defined research questions.

In this context, the LonqAPI is developed as a solution to both the case example and
the research questions. The name is derived from the terms long-running and query and
refers to the DaaS interface that evolves throughout this research. At BHS, the LonqAPI
refers to the DaaS API prototype for long-running queries on historical data. Therefore,
design and implementation namings of case example specific components include the
terms daas and history but are part of the LonqAPI.

Once fundamental literature exploration is complete and necessary knowledge is es-
tablished, the next step focuses on introducing the Data Layer at BHS and its DaaS
requirements as the case example on which to apply research results specifically. In
order to draw conclusions, the LonqAPI is designed, implemented, and evaluated.
Based on a high-level architecture that pays attention to BHS requirements, further
research is conducted for design decisions and implementation details. Design and
implementation involve generating a concrete solution to handle the Athena POM query
as a long-running example described within the case example AWS cloud environment.
During development, decisions are made by justifying them concerning previous and
further research and considering the requirements.

Throughout and after the implementation of the final software, selected measures are
used to determine the quality of the solution. The integration of the LonqAPI as a DaaS
API prototype is also evaluated according to BHS’s requirements.

Chapter 1. Introduction and Context 3
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Chapter 2

Fundamentals

This chapter introduces the fundamentals necessary to understand the context of this
thesis. Divided into six sections, it covers the topics of big data, the Industrial Internet
of Things, cloud computing, Data as a Service and web service APIs and defines the
term long-running queries.

2.1 Big Data

Sagiroglu and Sinanc [9] define the term Big Data as the combination of the following
three V’s:

Variety: Data is generated in different formats from different sources. It can be differen-
tiated between structured, semi-structured, and unstructured data.

Volume: The data size is at terabyte or petabyte scale. It challenges traditional storage
and analysis techniques.

Velocity: Data can be generated and processed at varying speeds, starting with discrete
batches up to (near) real-time or streaming data.

2.2 Industrial Internet of Things

The term Internet of Things (IoT) is described in numerous definitions. In a simple form,
IoT refers to a network of interconnected objects that can sense and share information to
fulfill a particular purpose [10]. The Industrial Internet of Things (IIoT) is a subset of IoT
and references to the use of IoT in an industrial context. IIoT can be characterized by the
following aspects to optimize overall production value: networked smart objects, cyber-
physical assets, generic information technologies, cloud or edge computing platforms,
and real-time enabled processing [11].

4
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2.3 Cloud Computing

The National Institute of Standards and Technology (NIST), a U.S. government entity,
defines cloud computing as follows [12]:

Cloud computing is amodel for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services) that can be rapidly pro-
visioned and released with minimal management effort or service provider
interaction.

2.3.1 Service Models

The NIST outlines three service models for cloud computing that define different levels
of abstraction for the customer [12]:

Software as a Service (SaaS): Customers access cloud provider’s applications without
managing infrastructure. Applications are available via web browsers or program
interfaces.

Platform as a Service (PaaS): Customers deploy their own applications using supported
tools without handling infrastructure. They control deployed applications and hosting
configuration settings.

Infrastructure as a Service (IaaS): Customers provision computing resources to run
arbitrary software. They do notmanage the cloud infrastructure but control fundamental
computing resources like storage, processing, and network.

2.3.2 Cloud-native Concepts

Cloud-native computing is an approach to building and running applications based on
the cloud computing paradigm and utilizing its advantages. A definition is provided by
Gannon et al. [13], and the most important concepts are summarized in the following.

Cloud-native applications operate globally distributed, are scalable, fault-tolerant, and
seamlessly upgrade- and testable. Security is integrated into the application and its
infrastructure. Microservices, containers, and their orchestration are commonparadigms
in cloud-native computing. A microservice is small, independent, and loosely coupled.
They are often packaged in containers, isolated environments running applications with
less overhead than virtual machines. Orchestrated by tools like Kubernetes, containers
can be deployed, scaled, and managed independently and automatically.

However, cloud-native computing is not limited to these concepts. Cloud providers offer
a broad set of services to offer new capabilities for applications. Serverless computing
is an essential concept in this context. It allows running code on-demand without
provisioning or managing servers. Other examples of managed services cover storage,
messaging, or machine learning.

Chapter 2. Fundamentals 5
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2.3.3 Amazon Web Services

AmazonWeb Services is a public cloud provider offering a broad set of over 200 services.
The company describes itself as “a highly reliable, scalable, low-cost infrastructure
platform in the cloud” [14]. Next to Microsoft Azure, Alibaba Cloud, and Google Cloud
Platform, AWS is one of the major cloud providers and has the biggest share with 40 %
in the public cloud IaaS market worldwide in 2022 [15].

2.4 Data as a Service

Like SaaS, Data as a Service (DaaS) is a service model for cloud computing. Its goal
is to provide data in a standardized format on demand to consumers irrespective of
geographical or organizational separation between provider and consumer. In contrast
to common data access within an organization that enables all methods of Create, Read,
Update, Delete (CRUD) operations, DaaS, in general, is limited to read-only access.
DaaS decouples data from applications, reducing maintenance expenses, enhancing
services, and increasing data value [16].

2.5 Web Service APIs

Web services are open Internet-oriented applications that enable interoperability be-
tween heterogeneous systems. They rely on standard protocols, including the Hypertext
Transfer Protocol (HTTP) and Simple Object Access Protocol (SOAP), to exchange data
in common formats like Extensible Markup Language (XML) or JavaScript Object Nota-
tion (JSON) [17, Sec. 5.1.1] [18].

Web services can implement APIs, also called web service APIs or web APIs [19]. The
term API stands for Application Programming Interface and describes software interfaces
that provide access to data or services for internal or external consumers. In contrast
to websites, APIs ensure structure in their use and content. This concept can be seen
as a contract between the provider and the consumer of the API to enhance efficiency
through documentation, consistency, and predictability [20, pp. 4-5].

2.6 Long-running Queries

As discussed in [21], queries on very large data can be a challenge for database adminis-
trators. A query execution time can be unpredictable and may take seconds to hours to
complete. Depending on the context, the term long-running can be defined differently.
For real-time applications in embedded systems, a response time within 10 milliseconds
can be required [22, pp. 5-6]. Processes that require computing resources on the scale of
supercomputers can take days to weeks to complete, and operations within minutes are
considered short [23]. Interfaces that are used by humans should respond within a few
seconds, as stated by Podelko [24]. Operations that take longer than 10 seconds should
be specially treated by the user interface. In the context of the LonqAPI, data can be
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provided to such interfaces. Based on these considerations, the term long-running in
this thesis refers to queries that can not guarantee a response time within ten seconds.
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Chapter 3

State of the Art

This chapter summarizes existing approaches for long-running operations on big data
and how they can be handled by asynchronous communication. It also gives an overview
of popular API technologies and compares their main characteristics. The outcomes
discussed here are used to design a high-level architecture for the LonqAPI in Chapter 5.

3.1 Asynchronous Communication

The goal of this thesis is to provide a solution to enable clients of the LonqAPI to retrieve
data based on long-running queries. The main problem is that the client has to wait for
the data to be available. Within synchronous communication, the client task is blocked
until it receives a response containing the necessary data. This is sufficient for short
operations but not for long-running queries. It is not a good user experience, especially
if the query can take several minutes to complete [25]. Brambilla et al. [26] show that
these problems can be solved using an asynchronous communication approach. The
client can send the request and continue its execution while the query is processed.
Results can be retrieved once they are available. This way, asynchronous interactions
ensure a consistent response time for the client. Figure 3.1 outlines the general difference
between synchronous and asynchronous communication for the client.

Figure 3.1: Synchronous vs. asynchronous communication (adapted from [27])
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Asynchronous interactions add complexity to the web service architecture. The API
server must face the following two main challenges [26]:

1. Long persistence of the request context
2. Logical request and response correlation

In case of the LonqAPI, request context refers to the status of the query execution and
the resulting data. The client can retrieve the status and results later in time, providing
correlation to the original request.

3.1.1 Asynchronous Communication Correlation

Brambilla et al. [26] describe three methods for correlation in asynchronous communi-
cation.

Correlation at Transport Level

Correlation at transport level is defined as the set of communication protocols that
provide a mechanism to correlate requests and responses. In 2004, Brambilla et al.
mentioned that protocols exist that natively support asynchronous communication. An
example cited is Hypertext Transfer Protocol Reliable (HTTPR), a protocol based on
HTTP that encapsulates application metadata in the payload [28]. However, HTTPR is
not widely adopted and has never become a standard since its introduction in 2001 [29].

Today, there are other protocols that enable asynchronous interactions. For instance,
WebSocket or Message Queuing Telemetry Transport (MQTT) are more widely adopted
and can be used to implement asynchronous communication. With both protocols,
the client can keep the connection open and receive messages from the server at any
time [30, p. 9], [31]. Relevant protocols and frameworks are discussed in more detail in
Section 3.3.

Correlation by Application Semantics

Correlation by application semantics uses the application data structure to embed
correlation information. For example, the data could be a business document, like a
report Portable Document Format (PDF), and the correlation information could be a
reference number within the document, like the report ID on the first PDF page. The
relation between requests and responses is implicit. This method is more complex and
less light in implementation as the transport level correlation. Its advantage is that it
can be used with synchronous protocols.

This method has the following disadvantages according to Brambilla et al.:

1. Application data structure has to be shared between client and server.
2. Unsuitable application data formats have to be converted.
3. Application data and implementation issues are not separated.
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Correlation by Conversation Metadata

Conversation metadata is separate information next to the application data. It describes
the interaction between client and server and can be used to correlate requests and
responses. The correlation can be on conversation level, relevant to multiple service
calls, or on operation level, used to relate a single request and response. Both levels
use a unique identifier, conversion ID, or operation ID for correlation. This identifier
is included in the metadata of the request and response messages, separated from the
application data. For example, the application data can be an email message, and the
correlation identifier can be part of the email metadata as the subject. Like correlation
by application semantics, this method also can be used with synchronous protocols but
solves the disadvantages mentioned in 3.1.1.

3.1.2 Client-Server Asynchronous Communication Patterns

Brambilla et al. [26] demonstrate that asynchronous communication can be implemented
using different patterns with a synchronous protocol and a correlation identifier. This
section summarizes these and other patterns based on point-to-point communication,
which can realize asynchronous communication in a client-server web service archi-
tecture. Polling and callback in this context are also described by Arulanthu et al. [32]
and Voelter et al. [33]. Voelter et al. additionally present the fire and forget and sync
with server patterns, in which the client does not receive results of the asynchronous
operation. Eugster et al. [34] discuss the publish/subscribe pattern in more detail.

Besides client-server communication, asynchronous communication can also be im-
plemented in a peer-to-peer architecture. In contrast to the client-server approach,
participants in peer-to-peer communication share resources like computing power with
other peers. This is not applicable to the LonqAPI as a centralized service providing data
and will not be carried out further in this thesis. A definition of peer-to-peer networking
is discussed in more detail by Schollmeier [35].

Fire and Forget

The fire and forget pattern is the simplest asynchronous communication pattern and is
realized with a single one-way message. The client sends a request to the server to start
an operation and does not expect a response. The client does not know if the server
received the request or what the status or result of the operation is [33].

Sync with Server

The sync with server pattern is similar to the fire and forget pattern. The client sends
a request to the server to start an operation but expects a reply to the reception of the
request. The server starts the requested operation independently and does not answer
more than the reception confirmation to the client. The client knows the server received
the request but not the status or result of the operation [33].
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Polling

The polling pattern is based on synchronous two-way request-response communication.
The client sends a request to the server to start an operation and receives a response with
a correlation identifier. The client has no information at which point in time the result
is available but can poll for it by sending a request with the correlation identifier. He
may poll for the result when it is not available and has to retry later. Once the operation
is completed and the client polls for it, the server sends the result within the response.
This is inefficient, can lead to more requests than necessary, and the client does not
receive the result as soon as it is available. On the contrary, the polling pattern is easy
to implement and requires no special service from the client [26], [32], [33].

Callback

A callback is a particular service provided by the client. The client sends a request to the
server and provides the callback address. The correlation identifier is either provided by
the client or generated by the server and returned in the acknowledgment. The server
handles the operation and sends the result to the callback address once available. This
pattern is more efficient than polling because no unnecessary requests are sent, and the
client receives the result as soon as it is available. It makes communication more flexible
because the result receiver can be different from the request sender. However, the client
must provide a service itself that is compatible with the server message [26], [32], [33].

Publish/Subscribe

The publish/subscribe pattern is similar to the callback pattern and can optionally
include acknowledgments. The client subscribes to a topic and sends a request to the
server. The server handles the operation and publishes the result to the topic. Unlike
the callback pattern, multiple callback messages can be sent from the server. This can be
used for repetitive information and event notification or to send the result in multiple
parts. The publish/subscribe pattern can also be used for one-to-many communication,
where multiple clients subscribe to the same topic [26], [34].

3.2 Query Request Processing

Section 3.1 described the communication between the client and the server. This section
focuses on processing of the query request on the server side, including invocation
management, query processing, and large query result handling.

3.2.1 Decoupled Invocation Handling

Synchronous requests can be handled and run by the server within one execution thread.
This is possible because the client is blocked until the operation is completed and the
result is returned as a response. Asynchronous requests need to be treated differently.
The client expects a response immediately after sending the request, even though the
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operation has not been completed yet. The server has to handle the request and run the
operation decoupled from the invocation in a separate thread or process [25], [36, pp.
215-218].

One method to decouple invocation dispatching and handling is to use a queue to
buffer the asynchronous operations, as mentioned by Zdun et al. [25] and described by
Richards [37, pp. 11-14] and Sbarski et al. [38, Sec. 3.2.3]. Requests as events are put
into the queue by one or multiple dispatcher processes. The requests stay in the queue
until a worker process is available to handle a request. An event mediator can be used
in between to allocate the events in the queue to available workers. Each worker can
process multiple requests after each other. Figure 3.2 shows the described workflow.
Queues in event-driven architectures enable separation of concerns and loose coupling
between components, making the system more scalable and robust.

Figure 3.2: Decoupled request invocation handling workflow using a queue with a mediator
and multiple request workers (adapted from [38, p. 48])

3.2.2 Query Processing

The query initiated by a client request is executed using a worker process. The goal
is to provide the desired result easy to use for the client. This process depends on the
specific use case but can be divided into multiple consecutive steps.

Extract, Transform, Load (ETL) processes are used to extract data from different sources,
transform it, and load it into a target, usually a data warehouse. The data warehouse
makes the collected data available for analysis and reporting. In the case of the LonqAPI,
the target data storage does not have to be a data warehouse, but the steps can be applied
to the query processing. The following paragraphs describe the three ETL stages and
how they can be applied to query processing. Figure 3.3 shows the ETL-inspired stages
in the context of LonqAPI query processing [39], [40].

Extraction: The extraction step retrieves data from source systems and handles their
heterogeneity. The data can be stored in an intermediate storage for further processing,
also called a staging area. For requests to the LonqAPI, this step can be used to per-
form the actual query on the cloud storage services and to extract the data for further
processing.

Transformation: The transformation step can include cleaning, transforming, and
integrating the data. The purpose is to correct, complete, and bring the data into a
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consistent schema for storage in the target system. This step represents the use case
specific changes on the data provided by the LonqAPI.

Loading: The loading step stores the data in the target system, which, in general, is a
data warehouse. This step results in the data stored in the target system, ready to be
used by the end-user. In the case of the LonqAPI, the result is the data provided to the
client, which he may access directly or via API calls.

Figure 3.3: The ETL-inspired query processing stages in the context of the LonqAPI

3.2.3 Large Query Result Handling

After query execution, the result has to be processed until it is ready for the end-user.
Depending on the query and its output, the result faces different challenges inherited
from its big data sources. To handle these challenges, the following principles can be
applied [41, p. 21]:

1. The result can be split into multiple parts to reduce the processed volume.
2. Multiple results can be processed parallel to reduce overall processing time.
3. Results should be processed from any point of failure to avoid restarting the whole

process.
4. Results should be processed consistently to avoid differences in format, type, or

structure.
5. Many algorithms need to be applied to process the data quickly and efficiently.

3.3 API Technologies

The following sections overview popular API technologies, including REST, WebSocket,
GraphQL, and gRPC. A comparison of the technologies is presented in the context of the
use case of the LonqAPI. The comparison also includes an evaluation of the compatibility
with currently available services in the AWS Cloud. Other considered characteristics are
the support of asynchronous communication at transport level, maturity, and usability
for client and server in terms of implementation for a DaaS API.

3.3.1 REST

REST stands for “Representational State Transfer” and is an architectural style for API
design. It is a stateless client-server architecture initially introduced by Roy Fielding
in [42]. The core abstraction used in a REST API is the concept of resources. Field-
ing defines a resource as “any information that can be named”. Based on the HTTP
protocol, clients can use its methods like GET, POST, PUT, and DELETE to perform
CRUD operations on resources provided by the server. A request from the client or
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the response from the server may contain control data to define the purpose of the
message or to parameterize the request. These resources are identified by a Uniform
Resource Identifier (URI) and can be represented in different formats like XML, JSON, or
Hypertext Markup Language (HTML) [43, p. 54]. The media type, or the last-modified
time, are examples of metadata that can be provided to describe a representation of a
resource. Response messages can also contain information that is not specific to the
representation but is metadata to the resource itself, like source links [44].

REST aims to reduce network communication and latency while increasing the indepen-
dence and scalability of components [44]. REST andHTTP do not support asynchronous
communication at transport level [26]. In combination with the REST architectural style,
HTTP is currently the most widely used API technology [45]. Many frameworks, pro-
gramming languages, and tools support it, which makes it easy to implement client
and server applications [46]–[48]. AWS provides a managed API service called API
Gateway that enables a REST architecture and integrates with other AWS services like
AWS Lambda, Elastic Compute Cloud (EC2), or DynamoDB [49].

3.3.2 WebSocket

In contrast to HTTP, the WebSocket protocol enables stateful, bidirectional, full-duplex
communication between client and server. After an initial HTTP handshake, the con-
nection is upgraded to WebSocket based on the Transmission Control Protocol (TCP).
The connection stays open until it is closed by the client or the server and can be used to
send messages in both directions at any time. REST requires a new TCP connection for
each request. A WebSocket connection uses only one TCP connection and can transmit
multiple messages [50].

The WebSocket protocol provides a standard for asynchronous communication at trans-
port level [30, p. 9]. It is more efficient for frequent messages and can reduce latency
compared to HTTP by lower overhead per message [50]. Not as widely adopted as
HTTP, nowadays almost all browsers support WebSocket [51], and multiple libraries
are available for client and server applications [52]. In addition to REST via HTTP, the
AWS API Gateway service supports WebSocket APIs [49].

3.3.3 GraphQL

GraphQL is a query language for APIs and a server-side runtime for fulfilling queries
with existing data. Initially developed by Facebook in 2012, it was open-sourced in 2015
and is now maintained by the GraphQL Foundation since 2019 [53]. Typically served
over HTTP, a GraphQL API exposes a single endpoint for all provided capabilities.
The API server defines a schema, including types, fields in these types, and operations
that can be performed on these types and fields. Relations between types and fields
define a graph that gives GraphQL its name. Operations are queries, mutations, and
subscriptions. A query is used to retrieve data, a mutation to change data, and a
subscription to receive data changes in real-time. On the server-side, each field on each
type is backed by a resolver, a function responsible for returning that field’s value. These

Chapter 3. State of the Art 14



Simon Kleber Bachelor Thesis

resolvers need to be implemented by the developer and can be used to retrieve data from
any source. The exchanged data is, in general, in the JSON format. In contrast to queries
and mutations, subscriptions can maintain an open connection, enabling the server
to push data to the client. To allow subscriptions, the server must support a protocol
to maintain the connection. Therefore, the most commonly used is the WebSocket
protocol [54], [55].

GraphQL can be more efficient than REST because it allows clients to request only the
data they need, making the API more flexible. It reduces the problem of over- and
underfetching data that is common in REST APIs with endpoints that return fixed data
structures. Related to underfetching, GraphQL can reduce the number of requests
needed to retrieve the desired data. The schema helps the server to validate and execute
operations and provides the client with structured information to understand the capa-
bilities of the API. Compared to REST, GraphQL is a relatively new technology that is
less widely adopted and can require developers to learn it. However, many libraries
are available for GraphQL client and server applications [56]. If the GraphQL Server
supports subscriptions, it can be used to implement asynchronous communication at
transport level. Like API Gateway for REST and WebSocket, AWS provides a man-
aged service for GraphQL called AWS AppSync [57]. A more detailed comparison of
GraphQL and REST is provided by Vadlamani et al. [45].

3.3.4 gRPC

Remote Procedure Call (RPC) is a communication protocol that enables a client to call a
procedure on a remote server [58, p. 39-40]. gRPC Remote Procedure Calls (gRPC) is
one of the most popular RPC frameworks, developed by Google and open-sourced in
2015 [59]. It is based on HTTP/2 and, by default, uses protocol buffers as its interface
description language and for data serialization. Services are defined in a proto file, an
ordinary text file. This file defines the methods that can be called remotely together
with their parameters and return types. For supported languages, including C++, Java,
Python, and Go, the gRPC framework can generate client and server code from the proto
file. Generated code simplifies data access through typed methods and data structures
or by enabling serialization and parsing of binary data. A server can implement multiple
services and expose them to handle client requests. The gRPC infrastructure handles the
communication between client and server, including serialization and deserialization of
data, connection management, and error handling. A client can call a remote procedure
on the server by invoking a method on a stub representing the remote procedure. The
stub is a client-side object that represents the server as if it were a local object. A channel
with specified arguments defines the connection between a stub and the server. Service
parameters and return types can be defined as streams to provide data in sequences.
Methods can be called synchronously or, depending on the programming language,
asynchronously [60], [61].

gRPC allows the developer to focus on the application logic and ensures abstraction from
the underlying client-server communication. The binary transfer format via HTTP/2
can be more efficient than other text-based formats like JSON used by REST or GraphQL.
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gRPC enforces clear and well-defined service interfaces between client and server, sup-
porting development experience andmaintainability. Native streaming support extends
the request-response model and can transfer extensive data in sequences. If the gRPC
implementation supports asynchronous service calls, it can be used for asynchronous
communication at transport level. The framework supports multiple programming
languages [60]. However, gRPC has a relatively small ecosystem and less developer
popularity than REST. The browse support is limited, which can be a problem for client
applications. Service definition changes require client and server code changes, and the
strongly typed characteristics may be a disadvantage for client flexibility. AWS does
not provide a managed service built to support gRPC, but Amazon EC2 instances can
be used to host gRPC services. The Elastic Kubernetes Service (EKS) and Elastic Load
Balancing (ELB) can be integrated to orchestrate and load balance them [62]. Compar-
isons of gRPC with other API technologies are presented by Indrasiri and Kuruppu [63,
Ch. 1] and Buzhin et al. [61].
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Chapter 4

Case Example

This chapter introduces the case example that is used throughout this thesis. It is based
on a real-world project at BHS and illustrates the concepts and methods presented.
The first section of this chapter briefly introduces the company BHS, focusing on the
relevance of IIoT and big data. The second section describes the existing Data Layer at
BHS and provides information to understand the context of this thesis. The third section
defines the requirements of BHS for the LonqAPI as its DaaS interface prototype.

4.1 Introduction to BHS Corrugated

BHS Corrugated Maschinen- und Anlagenbau GmbH (BHS) is the largest solution
provider in the corrugated board industry [6], with 20 locationsworldwide and over 3000
employees. Headquartered in Weiherhammer, Germany, BHS is primarily involved in
the construction, maintenance, and new developments of corrugator machine groups.
In the context of maintenance, BHS provides its customers with various digital products,
among others.

4.1.1 Relevance of Big Data at BHS Corrugated

Digital solutions at BHS are mainly based on collected production data from various
systems, primarily in customer plants. In more than 200 connected corrugators, the
production data of approximately 3,500 measured data points are gathered, validated,
and processed. The near real-time to real-time data uses storage space at a terabyte-scale
in on-premise data stores. Cloud-based systems are not yet production-ready but are
in development, as described in section 4.2. Regarding the three V’s of big data as
outlined in section 2.1 on page 4, BHS and its solutions can be classified in a big data
environment.
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4.1.2 Relevance of IIoT at BHS Corrugated

As mentioned in the previous section, a large share of data is collected from connected
corrugators. This data ismainly produced by sensors, actuators, and operational systems.
Gathered by servers in the customer plants, the data is transferred to BHS’s on-premise
and cloud-based systems. Regarding the aspects mentioned in section 2.2 on page 4,
BHS and its solutions can be classified in an IIoT environment.

4.2 Data Layer at BHS Corrugated

To validate, store, and provide the data collected from different sources at BHS, a Data
Layer in the AWS cloud is being developed. It is designed to replace on-premise data
storage and processing infrastructure in the future. Existing data is stored in relational
databases and a key-value Cassandra database cluster. This on-premise infrastructure is
limited in its scalability and flexibility and causes regular maintenance efforts and costs.
The Data Layer in the cloud aims to solve these problems by providing a central data
infrastructure based on managed AWS services. In its current state of development, the
Data Layer is able to receive and store specific data. Some other features and components
are planned and scheduled to be implemented in the future. One of these components
is the DaaS interface for historical data, which prototype is developed in the context of
this thesis. The following describes the current architecture and implementation of the
Data Layer, limiting ourselves to the components and details necessary for this work.
Components not relevant in this context are data ingestion and validation, a live data
interface, and a legacy systems interface.

4.2.1 Architecture

The Data Layer is developed as a cloud-native application in the AWS cloud, using
different services to process, store, and provide data. Collected from multiple IIoT
sources, the data of various types are transferred to the Data Layer in a consistent way.
Only queries and data pertinent to the LonqAPI will be presented in the following. By
ignoring the data ingestion, we can assume that the data is already validated, optionally
transformed, and in a format that is ready to be stored and queried.

In its current state of development, the Data Layer stores data in two different storage
services: Amazon Simple Storage Service (S3) and DynamoDB. Not yet in use, the
Relational Database Service (RDS) service is planned to be integrated. Figure 4.1 shows
the simplified architecture of the Data Layer. Depending on the data’s type, format, and
usage, it is stored in one of the three services.

S3: The S3 service is an object storage service [64], which is used in this case to store
data in the format of parquet files.

RDS: The RDS service is a managed database service to store data in a relational
database [65].
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DynamoDB: The DynamoDB service is a fully managed NoSQL database service that
stores data in a key-value format [66].

Figure 4.1: The simplified architektur of the Data Layer at BHS Corrugated

4.2.2 Implementation

The Data Layer uses the AWS Cloud Development Kit (AWS CDK), an Infrastructure
as Code (IaC) software development framework, to define, deploy, and manage AWS
cloud infrastructure in code [67]. Most of the relevant software for this thesis is written
in Python, and so is the AWS CDK Python library used to define all infrastructure.

All Data Layer code is organized in a monorepo, “a single repository that contains
multiple related or unrelated projects” [68]. One of these projects is mdl_cdk_core, which
is represented as a Python module within the repository containing all fundamental
infrastructure components of the Data Layer, including storage services.

Another module is mdl_data_access, which aims to provide an interface implementation
to access data stored in the Data Layer. It is an abstraction layer to access data from
different storage services and a utility library for format conversions. Relevant in the
development of the LonqAPI is one Athena query implementation, which is adapted
from the mdl_data_accessmodule. Further information regarding relevant queries and
data formats can be found in subsection 4.2.3.

The Pants build system [69] is used to manage dependencies, build, and test all projects
in the monorepo. Combined with existing Bash scripts and AWS CDK commands, Pants
is also used to deploy the Data Layer infrastructure to the AWS cloud.

4.2.3 Relevant Queries and Data Formats

The Data Layer stores data from different sources in different formats. The most sig-
nificant amount of data is produced by various sources at the customer corrugators,
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including sensors and actors. It is named Point of Measurement (POM) data and is stored
in S3 buckets in parquet files. Apache Parquet is a column-oriented data file format.
It utilizes compression and encoding schemes “to handle complex data in bulk” [70].
The POM data can be queried using Structured Query Language (SQL) statements via
the AWS Athena service. Athena is a query service that uses standard SQL to analyze
data stored in S3 buckets. For Athena to be able to query data in S3, an AWS Glue
Data Catalog is required as reference to the stored data [71]. Such a catalog is already
available for the POM data and can be used with the SQL query.

Relevant to this thesis is an Athena query to retrieve POM data from a single corrugator
specified by its area ID. The query filters the data by POM IDs and a time range with
timestamps in milliseconds since the Unix epoch [72, Sec. 4.16]. To reduce the amount
of scanned data, the WHERE clause also filters by year, month, day, and hour, which
are used as partition keys in the S3 bucket. This query statement is documented in
listing A.1, and an example result is shown in figure A.1 in the appendix. In the context
of this thesis, the query is referred to as the Athena POM query.

POM data values are stored in the metric system, but some applications require data in
imperial units. For that reason, the mdl_data_accessmodule provides a utility function
to convert POM data from metric to imperial units. Its input is a pandas.DataFrame [73]
containing a POM ID and a value column. The function requires access to a mapping
DynamoDB table that contains the POM IDs and their corresponding transformation
calculations. The header of this function is shown in listing A.2. Even so, the trans-
formation calculations could be implemented in the client application using the data,
this is implemented in the Data Layer for legacy applications at BHS and is therefore
included in the requirements in the following section.

4.3 Requirements

This section defines the functional and non-functional requirements of BHS for the
LonqAPI as a DaaS interface prototype in its Data Layer.

4.3.1 Functional Requirements

The functional requirements are defined as user stories. Therefore, the following struc-
ture is used as suggested by Cohn [74, pp. 80-81]:

I, as a [role], want [function] so that [business value].

The user stories aim to fulfill the quality attributes of the INVEST acronym [74, Ch.
2]: Independent, Negotiable, Valuable, Estimatable, Small and Testable. Each story
includes a list of acceptance criteria to verify the implementation.

The following user stories are defined for the LonqAPI:

1. I, as a developer, want to retrieve filtered historical POM data from a single
production plant so that I can integrate it into new and existing applications.
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(a) A necessary request parameter is implemented to identify the API client by
its client ID.

(b) A necessary request parameter is implemented to identify the production
facility of a client by its area ID.

(c) Necessary request parameters are implemented to filter the data by a list of
POM IDs.

(d) Necessary request parameter timestamps in milliseconds since the Unix
epoch [72, Sec. 4.16] are implemented to filter the data by a time range.

(e) An optional request parameter is implemented to convert the data from
metric to imperial units with a default to metric units.

(f) The data is retrieved from the Data Layer using the defined Athena POM
query in listing A.1.

(g) If imperial units are requested, the data is converted before it is returned
using the existing conversion function in listing A.2.

(h) Non-functional requirements are evaluated and fulfilled.
(i) Tests have been performed in the Data Layer development environment.

2. I, as a developer, want to retrieve an error message if I provide invalid request
parameters so that I can correct my request and avoid failures in my application.

(a) An error code is implemented to indicate that the request parameters are
invalid.

(b) A message is returned to tell the user which request parameters are invalid.
(c) No query is executed.
(d) No data is returned.
(e) Non-functional requirements are evaluated and fulfilled.
(f) Tests have been performed in the Data Layer development environment.

3. I, as a developer, want to retrieve an error message if querying the data fails so
that I can implement a fallback in my application.

(a) A status code is implemented to indicate that the query failed.
(b) A message is returned to explain the status code.
(c) No data is returned.
(d) Non-functional requirements are evaluated and fulfilled.
(e) Tests have been performed in the Data Layer development environment.

4. I, as an external developer, want to retrieve API documentation to understand
how to use the DaaS interface so that I can reduce the time to integrate the interface
into my application.

(a) All available data query requests are included in the API documentation.
(b) Each request is documented with a description according to its parameters.
(c) Each request is documented with a description according to its return values.
(d) Each request is documented with a description according to its error codes.
(e) Non-functional requirements are evaluated and fulfilled.
(f) Tests have been performed in the Data Layer development environment.
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4.3.2 Non-Functional Requirements

Explicitly not included in the requirements in the context of this thesis are the following
aspects:

1. Optimization of query execution performance.
2. Special precautions regarding API security and data protection.

The following non-functional requirements are defined for the LonqAPI:

1. The naming of the API apart from the domain name includes the terms DaaS and
history to indicate that the API provides historical data.

2. The system has to be designed to handle long-running queries with execution
times up to one day.

3. The system has to be designed to handle large data query results of up to 10 GB.
4. New queries can be integrated and existing queries can be modified without

changing the system’s principal structure.
5. New data sources can be integrated without changing the system’s principal

structure, including Amazon RDS and DynamoDB.
6. The API must support industry-standard technologies and formats to ensure

compatibility with various applications and tools.
7. Query results have to be available to the user for at least one day after the query

execution.
8. The system can scale horizontally to accommodate increased user load of up to

10000 requests per minute (not including long-running queries).
9. The system does not manipulate the original data value except for format or unit

conversions if requested.
10. The primary programming language of the system should be Python at version

3.10.
11. The system uses the existing Pants build system structure for all modules.
12. All implemented packages follow the Data Layer convention by starting with mdl-.
13. The system is deployed using the AWS CDK framework and infrastructure stacks

are implemented within the mdl-cdk-core package.
14. Lambda functions are deployed as Docker containers and use the x86 architecture

runtime.
15. Unique IDs used in the system are in Universally Unique Identifier (UUID) format

of version 4 [75].
16. Timestamps transmitted to the client are in ISO 8601 format [76].
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Chapter 5

LonqAPI Architecture

This chapter constructs the architecture of the LonqAPI in the AWS cloud based on
research results in chapter 3 and requirements in chapter 4. The first section presents
decisions that influence the architecture, and the second section describes abstract
components necessary within the architecture. The third section replaces these abstract
components with concrete AWS services after evaluating possible solutions. The last
section describes the resulting architecture of the LonqAPI.

5.1 Architectural Decisions

This section describes decisions based on research results in chapter 3 and requirements
for the LonqAPI in chapter 4. The decisions include the selection of an API technology
and an asynchronous communication pattern for it.

5.1.1 API Technology

The API technologies considered are REST, WebSocket, GraphQL, and gRPC. They
were described and compared in section 3.3. Every technology would be a possible
solution for API implementations, but not all of them are suitable for the LonqAPI and
its requirements outlined in section 4.3.

The best suited for the LonqAPI is REST. It is the most common API technology and,
therefore, the most familiar to developers. Newer technologies like GraphQL and
gRPC are less established than REST, especially for mechanical engineering companies
like BHS, which are not focused on software development. REST does not support
asynchronous communication at transport level, but other correlation methods can
be implemented, as highlighted in section 3.1.1. WebSocket supports asynchronous
communication at transport level but would require the client to keep a connection open
until the query is finished, which is not suitable for operations that can take several
minutes to hours. GraphQL is more flexible than REST, offers a subscriptionmechanism,
which could be used to subscribe to query results, and can be more efficient than REST
by transferring only the data requested by the client. However, for the use case of the
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LonqAPI, the flexibility of GraphQL is less relevant, because the API resource of a query
and its results are simple and do not require a complex API query language. gRPC can
be a good choice for internal APIs but is unsuitable for public APIs because it is not as
widely supported as REST. AWS also does not offer a service for gRPC APIs, as it does
for the other technologies.

5.1.2 Asynchronous Communication Pattern for REST

As described in section 3.1.2, there are five patterns to implement asynchronous com-
munication: fire and forget, sync with server, polling, callback, and publish/subscribe.
Fire and forget and sync with server are not suitable because the client does not receive
the results of the operation. Compared to the other two patterns, the polling pattern is
the simplest to implement and, therefore, the best choice for the LonqAPI. It does not
require the client to provide a special service as the other two patterns do. The drawback
is that more requests can be necessary to retrieve the result of a query that the client
does not receive immediately. Callback and publish/subscribe would be more efficient
but would make the API usage for a client more complex, and if the client could not
provide a suitable service to call, he would not be able to retrieve the results by himself.

5.2 Architecture Components Overview

Research results in chapter 3, requirements for the LonqAPI in chapter 4, and archi-
tectural decisions in section 5.1 construct the required components for the LonqAPI
architecture. This section describes these components, their requirements, purpose, and
interaction with each other, illustrated in figure 5.1.

Figure 5.1: Overview of the required LonqAPI architecture components and their interaction

REST API Component: The first component is an API service that provides an inter-
face for clients to send requests to the LonqAPI. As evaluated in section 5.1, the API
technology used for the LonqAPI is REST, and the pattern to implement asynchronous
communication is polling. Its main purpose is to handle client requests, invoke the
query execution asynchronously, and return a synchronous response to the client. This
component interacts with the query execution component to invoke the query processing
asynchronously and with the query result storage component to provide the data to the
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client. The status of a query result is stored in the query status storage component and
needs to be retrieved by the API service to return it to the client in response. To reduce
latency, the REST API service should be highly available, scalable, and performant.

As a server instance, the REST API component could also include the following storage
components, but they are separated to reduce coupling within the architecture. This
facilitates architecture changes, and deployments of the API service do not affect the
persistence.

Query Result Storage Component: The query result storage component within the
LonqAPI architecture stores the processed results of long-running queries. As described
in section 3.2.2, the query result processing can be compared to an ETL process. The
Loading step is the last in the ETL process and stores the results ready for the client to
retrieve. Therefore, the query result storage component needs to be able to store large
amounts of data and provide a way to retrieve it. Regarding the requirements of the
LonqAPI defined in section 4.3, results can be up to 10GB in size, must be available for
at least one day, and must be in industry-standard formats. To reduce the processed
volume of data, the results can be split into multiple parts. The storage should also
not be limited to query results of a specific data source in order to design a consistent
architecture for the LonqAPI.

Query Status Storage Component: As stated in section 3.1, two challenges of asyn-
chronous communication are the correlation of requests and responses and the persis-
tence of the request context. This request context refers to the query request’s status and
results. The client needs to be able to retrieve both based on the correlation identifier
of the request. Therefore, the query status storage component is necessary to persist
the request status and implementation-specific context. This service does not need to
store large amounts of data, but it should be highly available and performant to reduce
the latency of the LonqAPI on client polling requests. To reduce the coupling between
architecture components, the query status is only managed by the REST API component.
Another possibility would be to update the status by the query execution component
on changes.

Query ExecutionComponent: TheRESTAPI component is in charge of the client request
invocation, and the query results are persisted in the query result storage component
As described in section 3.2, the query defined by a client request must be decoupled
from its invocation, and results must be processed into a format usable by the client.
The REST API service used as the invocation dispatcher has to initiate a worker service
to execute and process the query and store the results while the API service returns
the response to the client. This worker service is the query execution component of the
LonqAPI architecture. It needs to be able to execute queries on different data sources
and be easily extensible to support new data sources or changing queries.

5.3 AWS Service Evaluation

The LonqAPI will be implemented as a cloud-native application on AWS as part of
the Data Layer at BHS, as presented in chapter 4. This section evaluates AWS services
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to fulfill the requirements of the LonqAPI architecture components described in the
previous section. The first subsection discusses API services for REST, the second and
third subsections evaluate services for query result and status storage, and the last
subsection covers services for the query execution component.

5.3.1 REST API Service

APIGateway is a service available in theAWS cloud specifically for REST andWebSocket
APIs. It offers multiple features for API management, such as API keys, Transport Layer
Security (TLS) encryption, versioning, and monitoring [77]. API Gateway does not
include computing resources to host the API implementation but can be integrated
with other AWS services, such as Lambda, to execute the API implementation [49].
Lambda functions are on-demand computing resources to execute inside a managed
or self-managed container. Their memory and execution time can be configured, but
they scale automatically to handle the load of incoming requests. Lambda functions
are billed per millisecond of execution time and the amount of memory configured, but
their execution time is limited to 15 minutes [78], [79].

Another possibility to host web services on AWS is to use EC2 instances. EC2 offers
virtual machines that can be configured with different operating systems, custom soft-
ware, and hardware resources. Its advantage is that it is highly customizable and can
be used for various use cases. The disadvantage is that it requires more effort to set
up and maintain the virtual machines than using managed services. AWS Fargate
aims to reduce this complexity by providing a serverless container platform managing
the underlying infrastructure. EC2 and Fargate are priced by configured hardware
resources and per second of execution time with a minimum of one minute [80], [81].

For the development of the LonqAPI, API Gateway in combination with Lambda is
the best choice because it reduces operational work and offers specific features for API
management. API Gateway can be used with other AWS services than Lambda, such
as Fargate, but Lambda’s pricing model makes it more cost-efficient for short-running
infrequent requests. If the LonqAPI is used more consistently, Fargate or EC2 can be a
better choice.

5.3.2 Query Result Storage Service

AWS offers multiple services to store data, such as S3, RDS, Elastic File System (EFS),
and DynamoDB. However, based on the following characteristics, S3 is the best choice
for the query result storage service of the LonqAPI. S3 stands for Simple Storage Service
and is a service to store objects in a flat structure. Objects can be up to 5TB in size and are
stored in buckets that can be organized in a hierarchical structure using prefixes. S3 is
highly available and durable, and its pricing is based on the amount of data stored and
transferred out of the service. Compared to other storage services, S3 is less expensive
because no computing resources are necessary to store and retrieve data. To maintain
and reduce storage, S3 offers lifecycle rules to archive or delete objects after a specified
time. Objects in buckets can be encrypted, configured to be restricted to specific users or
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roles, and accessed using an HTTP API. Additionally, presigned URLs can be generated
to grant temporary access to objects without requiring further authentication [64]. S3
is a suitable storage service for the LonqAPI because it is not limited to a specific data
source or format, can store large amounts of data for an unlimited time, and provides
an easy way to retrieve it. With presigned URLs, the LonqAPI can provide query results
to end-users without additional complexity for the LonqAPI implementation.

5.3.3 Query Status Storage Service

One option to store the query request status would be S3. The status can be persisted
the same way as the query results as an object in a bucket. This object could be in a
format like JSON and have the correlation identifier as its key to retrieve it within the
request handler Lambda function. However, DynamoDB is a better choice for this use
case. DynamoDB is a key-value Not only SQL (NoSQL) database service that advertises
“consistent, single-digit millisecond performance, nearly unlimited throughput and
storage” [82]. With on-demand capacity, DynamoDB is priced per million request units
and GB of storage [83]. Like S3, DynamoDB allows the expiration of stored items after
a specified time [66]. The combination of performance and low pricing for low usage
makes DynamoDB a good choice for the query status storage service of the LonqAPI. It
can easily be used with the correlation identifier as the key and the request status as its
value.

5.3.4 Query Execution Service

As evaluated in subsection 5.3.1, a Lambda function is in charge of the client request in-
vocation. S3 is used for the query result storage service, as explained in subsection 5.3.2.
This Lambda function has to initiate a worker service to execute and process the query
and store the results in S3 while the Lambda function returns the response to the client.
This worker service is the query execution component of the LonqAPI architecture and
should be flexible and easily extensible to support various data sources and chang-
ing queries. In the following, three different approaches are described to design this
component using AWS services. This is followed by their evaluation.

Athena + Connectors

Athena is a service to analyze and query data stored in S3 and supports file formats like
Comma-Separated Values (CSV), JSON, or parquet. It is used to query POM data in
the Machine Data Layer at BHS, as described in section 4.2.3. The Athena API allows
one to start an asynchronous queued query execution, get its status, and retrieve the
results once the query is finished [84]. Results of Data Manipulation Language (DML)
statements are stored by default in S3 in CSV format. However, using the Create Table
As (CTAS) or UNLOAD statement, the results can be stored in other formats, such as
JSON or parquet. Specialized in files in S3 with data structure defined in a Glue Data
Catalog, Athena can not query data stored in other AWS services by default. For this
purpose, connectors can be integrated for supported services, such as RDS, DynamoDB,

Chapter 5. LonqAPI Architecture 27



Simon Kleber Bachelor Thesis

or DocumentDB. An Athena connector is a Lambda function that converts the query
format and results between Athena and the specific service. For this conversion, the
connector also needs a Glue Data Catalog to reference the data and its schema in the
service [71].

Figure 5.2: The architecture of the Athena query-handling approch in combination with
Lambda connectors

Athena can be used as a query-handling approach, as shown in figure 5.2. The POMdata
query use case of the LonqAPI can be implemented using Athena without a connector,
but each other data source than S3 would require a Lambda connector. It is relatively
easy to use with standard SQL and its asynchronous query execution. If no further data
processing is necessary, the query results can be stored in specific formats directly in S3
using the CTAS or UNLOAD statement. However, the need for a Lambda connector
for other data sources further limits the use of Athena. AWS Lambda is limited to 15
minutes of execution time [79], which is not enough for the requirements of the LonqAPI.
Another drawback is creating and maintaining a Glue Data Catalog for each data source.

Fargate Container Cluster

AWS Elastic Container Service is a fully managed service to run Docker containers
on AWS. ECS offers EC2 instances and AWS Fargate as capacity options to run the
containers. EC2 instances are virtual machines that can be configured with different
operating systems, custom software, and hardware resources. Fargate allows less
configuration and can run constantly as a service or on-demand as a task. The definition
of a Fargate task specifies the Docker image to run, the amount of memory and CPU
to allocate, and other configuration options. To start a task and get its current status
the, ECS API with the StartTask and DescribeTasks actions can be used. A task does not
have an execution limit, but in case of security patches or other maintenance, it can be
stopped by AWS after a retirement notification. Both EC2 and Fargate are priced by
configured hardware resources and per second of execution time with a minimum of
one minute [80], [81], [85].
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Figure 5.3: The architecture of the Fargate container cluster query-handling approach

As a query-handling approach, an ECS cluster with Fargate tasks can be used as shown
in figure 5.3. The request handler Lambda function can start the Fargate task asyn-
chronously with the query as a parameter. A new container is started for each query
request and terminates once the query is finished.

Step Functions State Machine

AWS Step Functions is a service to orchestrate applications by integrating other AWS
services in a workflow. This workflow is defined as a state machine consisting of a
series of event-driven states. Task states can be used to perform work, such as running
a Lambda function, calling another AWS service, or invoking a third-party API. Other
state types allow to control the flow of the state machine, such as choice states to branch
the flow based on conditions or parallel states to execute multiple tasks in parallel. A
state machine task can call any AWS service by its API, but Step Functions also offers
optimized integration for some services, such as Lambda, Athena, or ECS. Athena, for ex-
ample, can be queried synchronously or asynchronously using the StartQueryExecution
API action.

However, not all storage services can be queried directly using Step Functions tasks,
e.g. RDS instances. The RDS Data Service API can only run SQL statements with a
result limit of 1 MB binary response data [86]. Other solutions can be necessary to query
such a service, like Fargate tasks. Another possibility to query PostgreSQL databases
especially in RDS would be to prepare the database to export to S3 by installing the
aws_s3 extension [65]. With this extension, the integrated ExecuteStatement task can
be used by the state machine without a result limit. The input and output of a state
machine task is limited to 256 KB of data. Passing larger amounts requires storing it in
S3 and passing a reference to the object. Queries integrated into a state machine need to
mind this data limit and should store results directly in S3, like Athena with the CTAS
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or UNLOAD statement. If a task can not store results directly in S3, a ResultWriter
within a Map state can write data exceeding the limit to S3, and object keys are passed
to the next state.

A state machine can either be defined as a standard or express workflow. Express
workflows are optimized for high-performance and high-throughput use cases but are
limited to 5 minutes of execution time. Standard workflows are limited to 1 year of
execution time and are only billed by the number of state transitions with 0.025 $ per
1,000 transitions. The standard workflow state machine itself does not consume any
resources, only the tasks executed by it are billed. State machine executions can be
started asynchronously using the StartExecution API action [87], [88].

Figure 5.4: The architecture of the Step Functions state machine query-handling approach

As a query-handling approach, a Step Functions state machine can be used as shown
in figure 5.4. The request handler Lambda function can start the state machine asyn-
chronously with the query as a parameter in its input. As described in the AWS Step
Functions FAQ [89], state machines can be better than queue-based approaches with
AWS SQS. They offer flexibility by allowing integration with any other AWS service
and features to facilitate application development. In figure 5.4, the boxes around the
storage and processing services represent that they are not called by another executing
service like Fargate or Lambda but as part of the state machine, depending on the query
operation. This way, a state machine can consistently cover all steps from querying
the data to storing the processed results in S3. Athena and other services can be called
directly without other billed resources, and the state machine itself is not billed for
waiting time. If a service can not write its output directly to S3, a ResultWriter can do
this in a Map state. Database queries or other services that can not be called directly by
a state machine task can be executed by a Lambda Function or Fargate, depending on
the execution time.
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Evaluation of Query-Handling Approaches

Each of the three query-handling approaches described in the previous subsections is a
possible solution for handling long-running queries in AWS. The Athena approach is the
easiest to implement for the POM data use case described in section 4.2.3. However, no
data processing is supported after the query execution without further services. Athena
is also only suitable for other data sources with a connector, which requires additional
effort to implement andmaintain. These connectors are limited to 15 minutes of Lambda
execution time and, therefore, are unsuitable for the LonqAPI. The Fargate approach
is a simple solution to execute queries and process results in self-defined containers.
The drawback is that managing the container cluster with a suitable configuration
requires effort to reduce costs. In comparison, the Step Functions approach does not
require computing resources itself. This reduces infrastructure management effort and
costs but requires more effort to implement the state machine and its tasks. Like a
Fargate container, the state machine can combine all steps for query execution and result
processing in a consistent way. However, if implemented correctly, the state machine
can also be extended by further states to support future requirements that build on data
processed by the state machine. This extensibility and the reduced costs make the Step
Functions approach the best choice for the LonqAPI.

5.4 Architecture Overview

This section describes the architecture of the LonqAPI based on the architectural deci-
sions andAWS service evaluation in the previous sections. Figure 5.5 shows an overview
of the described architecture. It uses API Gateway as the REST API service, Lambda
to handle the client REST requests, DynamoDB to store the request status, and S3 to
store the query results. Step Functions State Machines are used to execute the queries
asynchronously and process the results into a format usable by the client.

A client sends a data request via Hypertext Transfer Protocol Secure (HTTPS) to the
API Gateway REST API, which invokes a Lambda function to handle the request. The
request handler Lambda function parses the request and starts a Step Functions state
machine asynchronously with the necessary parameters for the query as input. To
return a synchronous response, the Lambda function continues its execution decoupled
from the state machine, generates a correlation identifier, and saves the request status
in DynamoDB. The correlation identifier is returned to the client as part of the response.
The client can use this identifier to poll the query status and get presigned URLs to
retrieve the query results from S3. The state machine executes the query defined by the
client request and stores the results in S3. Once the query is finished and the client polls
for its status, the request handler Lambda function can generate the presigned URLs,
update the DynamoDB status item and return the response to the client.

There are different ways to extend this architecture further. For example, multiple or
a single Lambda function can be used to handle client requests. All queries can be
executed by a single state machine or separately for each query. These and other design
decisions are discussed in chapter 6.
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Figure 5.5: The LonqAPI architecture overview
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Chapter 6

Design Decisions

As stated in section 4.3, data based on the Athena POM query has to be provided,
with additional performance and implementation flexibility requirements. This data
should be accessible via a REST API served by AWS API Gateway and AWS Lambda, as
evaluated in chapter 5. The queries are executed within a Step Function state machine,
and the results are stored in S3, accessible for the client via presigned URLs. This chapter
describes the design decisions for the LonqAPI implementation in chapter 7.

First, the REST API is designed in section 6.1, including the polling pattern with general
design practices for necessary endpoints. Then, the handling of API Gateway events
with AWS Lambda is evaluated in section 6.2. The third section describes decisions
concerning query handling within state machines, followed by a summary.

6.1 REST API Design

This section makes decisions on the design of the REST API. Existing approaches are
described to implement the polling pattern in the LonqAPI for data based on long-
running queries. Furthermore, general RESTful practices are considered to design the
necessary endpoints for the Athena POM query.

6.1.1 REST Polling Pattern

Based on the HTTP protocol, REST is a synchronous request-response communication
architecture. To enable asynchronous communication, the operation needs to be divided
into two or more synchronous requests. To achieve this for the LonqAPI, the polling
pattern is used. It is described in the following paragraph based on designs presented
by Richardson and Ruby [90, pp. 228-230] and Allamaraju [91, pp. 19-22].

To start and track a long-running operation, the server provides a resource representing
the operation. The operation can also be called a task, job, or, in the case of the LonqAPI,
a long-running query. To create a new long-running query, the client sends a POST
request to the resource with all associated parameters. Even if the client wants to retrieve
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data from the API, this should not be a GET request because the purpose is to create
a new resource. The server initiates the query and returns a response with the HTTP
status code 202 (Accepted), a Location header with the URI of the created resource, and
a response body with the current resource representation. The resource representation
contains the status of the query and other related information. The response can also
include a Retry-After header to indicate when the server estimates the operation to
be completed [92, p. 300]. The URI of the resource can be used to poll the status of
the query by sending GET requests. To polling requests the server responds with the
query representation and a status code that can depend on the current execution status.
Allamaraju [91, pp. 19-22] uses a 303 (See Other) status code with a Location header
pointing to the result once the query is completed and a 200 (OK) status code with the
query representation otherwise.

For the LonqAPI, the long-running query resource is defined. It can be created with a
POST request that returns the resource URI in the Location header, a query representa-
tion in the body, and the status code 202 (Accepted). Using this URI, the client can poll
the query status with GET requests. It contains a unique ID as the correlation identifier,
which is also included in the query URI. Since the query can result in multiple files, the
resource contains a list of presigned S3 Uniform Resource Locators (URLs) to download
the data by sending GET requests. The Location header can only point to a single other
resource [93, p. 134], so it is not used to point to the results. Instead, on completion of
the query, its resource is updated with the result URLs, and the status code 200 (OK) is
returned.

6.1.2 RESTful API Design Practices

The following paragraphs summarize design practices presented by Richardson and
Ruby [90, Ch. 5] and De [43, Ch. 3]. These practices are limited to the use case of the
LonqAPI and do not claim to be complete.

Hypermedia as the Engine ofApplication State (HATEOAS): Resource representations
can include links to related resources. This allows clients to navigate dynamically
through the API without knowing the URI structure.

URI design: The resource name should be a noun, not a verb. Domains and subdomains
should be used to separate and organize resources in a hierarchy. A collection resource
can group multiple similar resources, should have a separate URI, and be named in
the plural. Non-hierarchical elements can be separated by a comma (,) or semicolon (;).
Hyphens (-) or underscores (_) can be used to separate words in a resource name. URIs
are case-sensitive, but lowercase is preferred.

Request variable placement: The query parameters can be placed in the path, query
string, body, or header of the request. The path should be used for variables that are
part of the resource identification or hierarchy. The query string should be used for
variables that are input to an algorithm. The body should be used for variables that are
part of a representation but can also be used for more complex inputs that do not fit in
the query string. The header should be used for variables not part of the resource or
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representation but for authentication or other purposes.

Response codes: The response code indicates the result of the REST request. Section 6.1.1
describes the response code 202 (Accepted), indicating that an asynchronous operation
is initiated. The response code 200 (OK) indicates that the request was successful, as
well as for polling requests that return the current status of the operation, even if it is
not completed or failed. If a client requests a resource that does not exist, the response
code 404 (Not Found) is used. The response code 400 (Bad Request) should be returned
for invalid requests for which the client is responsible. If the server is responsible for
the error, the response code 500 (Internal Server Error) should be returned.

Response body: The response body should contain the requested resource represen-
tation. The representation can be in different formats, but JSON is recommended for
serialized data structures.

6.1.3 LonqAPI REST Endpoints

As described in section 6.1.1, a long-running query is represented by a resource and
can be created by a POST request and polled by a GET request. In the context of this
thesis, only the Athena POM query described in section 4.2.3 must be implemented.
The following paragraphs present the LonqAPI REST endpoints based on the practices
described in the previous section (6.1.2) and requirements from section 4.3.

Create POMQuery Endpoint

The LonqAPI consists of two endpoints, one to create a POM data query and one to poll
the status for a long-running query. The relative path without the server address of the
POM data query endpoint looks like this:

POST /daas−h i s to ry/long−running−quer ies /{ c l i e n t _ i d }/ process −data/
areas /{ area_id }/ points −of −measurement−query

As defined in the requirements, DaaS and history are used apart from the API domain
name in first-level path elements. The term long-running-queries separates long-running
queries from other resources. After that, data-specific path elements are integrated to
define the query to create. To identify the client that initiated and, therefore, owns the
query, the client_id is included in the path. The process-data sub-path separates other
data origins. An area represents a client’s production facility, which is also included in
the path hierarchy with the area_id. Because a client can have multiple areas, the areas
sub-path is used before the area_id to specify a single area out of multiple possible areas.
Finally, the points-of-measurement-query path element names the concrete query to create.
It is based on process data from a specific area of a client.

This path has to be extended with the following query string parameters that are input
to the query algorithm:

• pomIds: The IDs of the points of measurement to query as comma-separated
string.
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• startTime: The query interval start time as milliseconds since the Unix epoch [72,
Sec. 4.16].

• endTime: The query interval end time as milliseconds since the Unix epoch.
• imperial: A boolean value to indicate if the query result should be in imperial

units.

The query string parameters are written in camel case to be consistent with other BHS
APIs, even so, lowercase should be preferred. The ID and timestamp formats are as
defined in the requirements in section 4.3. The imperial parameter is optional and
defaults to false, as specified in user story 1. As mentioned in section 4.2.3, the data
transformation triggered by this parameter could be implemented in the client applica-
tion. However, due to legacy applications at BHS, it is implemented in the LonqAPI.
Since only metric or imperial units are supported, the parameter is a boolean value.

The response of this endpoint specifies the created query resource in the Location
header and a 202 (Accepted) status code. The response body contains the query resource
representation with the current status and other related information as described in
section 6.1.3.

Long-running Query Resource Endpoint

Queries and their status can be polledwith a GET request to the query resource endpoint.
It is not specific to a query type and, therefore, is used for all created long-running queries.
This reduces the number of endpoints and simplifies future extensions. Therefore, the
path contains only variables that are relevant part of the identification of the query and
not the query type. Its relative path looks like this:

GET /daas−h i s to ry/long−running−quer ies /{ c l i e n t _ i d }/ { query_id }

The client_id is included to identify the query initiator, and the query_id specifies the
query to poll. The client ID is an essential part of the query resource as its owner
identifier. The area ID is specific to the POM data query but may not be relevant for
other queries. Therefore, it is not included in the query resource and its path.

Long-Running Query Resource Representation

The response body for both endpoints is a JSON object representing the query resource.
Like its path, the query resource is independent of the concrete query type and is used
for all long-running queries. It contains only the information that are general for all
queries. Aligned with the Google JSON style guide [94], property names are in camel
case. The query resource representation contains the following properties:

• clientId: The ID of the client that initiated the query as UUID version 4 [75] string.
• queryId: The ID of the query as UUID version 4 string.
• status: The query status as a string with the values RUNNING, COMPLETED,

COMPLETED_NO_DATA, or FAILED.
• resultUrls: A list of presigned S3 URLs to download the query result with tempo-

rary access.
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• creationTime: The query creation timestamp in ISO 8601 format [76].
• expirationTime: The query expiration timestamp in ISO 8601 format.
• createQueryUrl: The URL, including the parameters, used to create the query.
• queryUrl: The URL of the query resource.

The client ID and query ID are included because they are part of the query resource
identification. The status is necessary for the client to poll until the query is finished. It is
set to RUNNINGwhen the query is created. COMPLETED and FAILED are sufficient as
final statuses. However, the COMPLETED_NO_DATA status is used to avoid confusion
with the COMPLETED status when no data is available for the query. Other status
definitions can be added in the future. The creation and expiration timestamps are
included to indicate the query lifetime. The query ID is sufficient to correlate the created
query with the original request. However, the createQueryUrl is appended to the query
resource representation to simplify the API usage for humans by providing the URL
used to create the query. The query URL is included to simplify the polling process
for the client. The list of result URLs is empty when the query is created and updated
once results are available. Listing A.3 in the appendix shows an example query resource
representation.

6.2 AWS Lambda Request Handling

This section makes decisions on how to handle REST API requests with AWS API
Gateway and Lambda. It evaluates the advantages and disadvantages of a monolithic
and single-purpose Lambda function approach. Furthermore, it compares Python
frameworks compatible with the Lambda runtime to handle API Gateway events.

6.2.1 Monolithic vs. single-purpose Lambda Function

API Gateway can trigger a Lambda function with a REST API event. This event contains
information like the HTTP method, path, query string parameters, and headers. One
Lambda function can be used for multiple endpoints, grouped by the path and HTTP
method. This allows different Lambda function architecture designs to handle API
Gateway events. One extreme is to use a single-purpose Lambda function for each
endpoint. The other extreme is to use one monolithic Lambda function for all end-
points. A mix of both is also possible with micro functions for groups of endpoints.
Each approach has advantages and disadvantages for infrastructure implementation,
deployment, maintenance, and performance. These are discussed in various blog posts
like [95] and [96] and mentioned in AWS documentation and guides [97], [98]. Table 6.1
summarizes the advantages and disadvantages of the monolithic and single-purpose
Lambda function approaches.

Multiple functions can be configured and deployed independently, which gives more
granularity over Identity and Access Management (IAM) permissions, resource usage,
and other configurations. Package size can be reduced because it only contains the
code needed for the endpoint, and the deployment time of the single function can be
faster. The complexity per function is reduced because its scope is smaller. Tracing and
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Pros Cons

Single-Purpose Lambda Function

Granular permissions and resources Growing infrastructure complexity
Reduced package size per function Harder code sharing
Lower complexity per function Deployment of multiple functions
Separate tracing and logging Difficulty in permission maintenance
Independent scaling More frequent cold starts
Independent testing Harder runtime switching
Better reusability

Monolithic Lambda Function

Easier maintenance and extension Function can become complex
Better code sharing Less granular permissions
Lower infrastructure complexity Larger package size per function
Deployment of only one function Bigger deployment impact
Less frequent cold starts Low reusability
Framework usage benefits Joined tracing and logging
Easier runtime switching

Table 6.1: Comparison ofmonolithic and single-purpose Lambda functions for API Gateway
request handling

logging activities are better separated and facilitate debugging. Multiple functions can
benefit from the Lambda scaling model and can be scaled independently, depending on
the specific usage. If the functions perform generic tasks, they can be reused in other
projects. Depending on the implementation, changing and testing a small function can
be easier because it has fewer dependencies and is limited to a specific task. However,
the number of functions can grow quickly, and the whole application can become
complex if the functions are poorly organized. To benefit from small package sizes and
fast deployment times, the functions should be independent and not share dependencies.
This can lead to code duplication andmaintenance overhead. If multiple functions share
dependencies, the deployment time can increase because the changes must be deployed
to all dependent functions. To achieve more granular permissions, the functions need to
be configured with different roles and policies, which can be difficult to maintain, and
in the case of IaC tools like AWS CDK, infrastructure code increases. The number of
functions can also affect performance because the Lambda runtime needs to be initialized
for each function, causing cold start delays more frequently.

A monolithic function can be easier to maintain and extend because all code is in
one place. Code and dependencies can be shared between endpoint routes, and code
duplication is avoided. The infrastructure code is simpler, and deployment time can
be reduced because only one function needs to be configured and deployed. Cold
starts can be reduced because the Lambda runtime is initialized only once and used
for multiple purposes. With AWS API Gateway events that trigger the function, it is
possible to use a framework to resolve the requests, avoid boilerplate code, and extend
the implementation with additional functionality. A REST framework can also be used
for multiple smaller functions, but this makes them share dependencies, and changes
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can affect multiple functions and their deployment. A single function can make it easier
to switch from Lambda to another runtime like AWS Fargate or EC2. However, the
function can become complex and difficult to understand due to its larger scope. IAM
permissions are less granular, and a execution can have more permissions than needed
for a specific endpoint. The package size is bigger, and the single deployment and cold
start time can be longer. Changes to one endpoint affect the whole application and need
to be considered. The broad usage makes it hard to reuse the function in other projects.
Logging and tracing activities are not separated and can be harder to debug.

The LonqAPI REST API is designed with a monolithic Lambda function handling API
Gateway events for all endpoints. The main reason is to ensure flexibility and extensi-
bility without increasing infrastructure complexity and deployment time. The API can
be extended with additional endpoints and functionality without deploying additional
functions. This avoids increasing infrastructure and deployment time, especially if the
API can grow to a large number of endpoints. If the API requirements change, the
implementation can be moved to another runtime like AWS Fargate or EC2 more easily.
A framework is used to reduce boilerplate code, add functionality, facilitate debugging,
and improve the developer experience. The framework is evaluated in the following
section (6.2.2). In the case of critical permissions or runtime requirements, the function
can still be split into multiple with different policies and configurations.

6.2.2 REST API Python Framework

The REST API is realized with AWS API Gateway and a single Lambda function to
handle all endpoint requests. As defined in the requirements in section 4.3.2, the
Lambda function is implemented in Python. The API Gateway event is passed to
the Lambda as input to the function handler and contains information like the HTTP
method, path, query string parameters, and headers. The Lambda function needs to
parse the event, resolve the request, perform the necessary actions, and return a response.
To reduce boilerplate code, add functionality, and improve the developer experience,
the implementation is based on a framework. This section evaluates different Python
frameworks for REST APIs and their compatibility with AWS Lambda and API Gateway
events.

Framework Comparison

To be applicable to the LonqAPI, the REST API framework must meet specific require-
ments. These minimal requirements for a framework are:

• Python 3.10 compatibility
• Resolve requests from API Gateway in the Lambda function runtime
• Parse request parameters in the path, query string, and body
• Return a response with a defined status code, header variables, and body

A framework thatmeets these requirements can be used to implement the LonqAPI REST
API. The idea of using such a framework in an AWS Lambda function implementation
with API Gateway events can be seen in listing A.4 in the appendix.
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To compare and evaluate applicable frameworks, further criteria are defined to consider
the framework benefits and drawbacks for the LonqAPI use case. Included is also
the feature of an automatic OpenAPI specification [99] generation for the REST API
documentation, which some frameworks offer. This standard can be used to define and
document the API and satisfy the LonqAPI requirements in user story 4 in section 4.3.
Performance is not considered because of a lack of comparable benchmarks for the
use case of this thesis. There are benchmarks comparing most of these frameworks,
like the independent TechEmpower benchmarks [100]. However, their quality is not
scientifically guaranteed, and necessary adapters for AWS Lambda and API Gateway
events are not considered. Also not considered is testing utilities and documentation
quality because all frameworks offer both in a sufficient way. However, the simplicity
criteria takes into account the quality of the documentation. The following criteria are
defined to evaluate the frameworks:

• Features: The framework offers rich features for the LonqAPI use case.
• Community Support: The framework is used by a big community, has a large

number of contributors, and is actively developed and maintained.
• Simplicity: The framework is easy to learn and use.
• OpenAPI: The framework can automatically generate an OpenAPI specification

for the REST API documentation and provide it in a standard file format like JSON
or YAML Ain’t Markup Language (YAML).

• Adapter: TheAWSLambda andAPIGateway events adapter is actively developed
and maintained.

The following paragraphs present applicable frameworks that are evaluated based on
the criteria. For simplicity, only the frameworks and adapters for AWS Lambda and
API Gateway events are evaluated, not further extensions. To measure the community
support, the GitHub repositories of the frameworks are analyzed with their number of
stars, contributors, and merged pull requests.

AWS Lambda Powertools: AWS provides the Lambda Powertools library [97] that
contains utilities for Lambda functions and includes a resolver for API Gateway REST
APIs. This APIGatewayRestResolver fulfills the minimal requirements for the LonqAPI
and does not need a adapter like the other frameworks. Its features are limited, but it
enables request and response validation and OpenAPI specification generation. This
OpenAPI specification is only available by an optional Swagger UI [101] endpoint and
not in file formats like JSON or YAML. Therefore, it is relatively simple to use, and the
documentation is good with multiple examples. Its software is actively developed and
maintained by, Amazon with 1059 merged pull requests for the year 2023 at the time of
writing [102]. However, the usage is limited to AWS Lambda and API Gateway, and so
is its community, with 2.5 k stars and 130 contributors. It is worth mentioning that this
library includes more utilities for Lambda functions, and the REST API resolver is not
its primary purpose like for the other frameworks.

Flask with awsgi: Flask [103] is a popular Python microframework with core function-
ality. It is a Web Server Gateway Interface (WSGI) framework for web applications
and cannot be used with API Gateway events by default. However, it can be used
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with the awsgi adapter [104] to run on AWS Lambda and resolve the events. With its
small core, Flask is built to be simple and easy to extend during development. Flask
without extensions does not offer further features like request validation or OpenAPI
specification generation. On GitHub, it has over 65 k stars and 713 contributors, but the
necessary awsgi adapter repository has only 197 stars and 14 contributors. Flask is still
actively developed, but compared to AWS Lambda Powertools, it has fewer merged
pull requests, with 111 for 2023.

Django with Mangum: Django [105] is like Flask a popular WSGI framework with
Asynchronous Server Gateway Interface (ASGI) support since version 3.0. It is a full-
stack high-level framework with many features for more purposes than Flask. To
make it compatible with AWS Lambda and API Gateway events, the awsgi or the
Mangum [106] adapter can be used. Mangum is a wrapper for ASGI applications and
should be preferred over awsgi because of its higher popularity, with 1.5 k stars and 28
contributors. Django has the largest community of the evaluated frameworks, measured
by 74 k stars and more than 2.4 k contributors. With 731 merged pull requests in 2023,
it is also actively maintained. However, its many features and use cases make it more
complex than the other frameworks, and it requires more time to learn. Django does
not offer native OpenAPI specification generation.

FastAPI with Mangum: FastAPI [107] is an ASGI framework based on Starlette [108]
and Pydantic [109]. FastAPI is a newer framework that aims to be “high performance,
easy to learn, fast to code, ready for production” [110]. With Pydantic, it integrates
type checking and validation for requests and responses. Further usable features are
controller classes, dependency injection, and native OpenAPI specification generation.
To run on AWS Lambda, the Mangum adapter can be used like for Django. FastAPI is
relatively new but already has a large community with 66 k stars and 542 contributors.
Although it is actively developed with 329 merged pull requests in 2023, FastAPI is
mainly developed and maintained by one person, and some issues are open for a long
time, with the oldest open issues dating back to 2019.

Litestar with Mangum: Litestar [111] is a new ASGI framework like FastAPI based on
Starlette and integrates Pydantic for type checking. Formerly named Starlite, it was
renamed Litestar to avoid confusion with Starlette, whose dependency was removed in
November 2022 after growing more independent. Litestar already has similar features
like FastAPI and somemore, like caching and server-side session support. It is relatively
new and has a smaller community with 3.7 k stars and 170 contributors, but compared to
FastAPI, it ismaintained by three chosenmaintainers and represented by an organization.
This more independent development is also reflected in the number of merged pull
requests, which is over 1000 for 2023. With Mangum, it can be used on AWS Lambda
and API Gateway events like FastAPI or Django. It has good, detailed, structured
documentation with multiple code examples explaining its relatively easy usage. Like
FastAPI, Litestar has native OpenAPI specification generation that can be accessed via
endpoints as JSON or YAML files or as Swagger UI.
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Framework Evaluation

The described frameworks are evaluated based on the criteria from section 6.2.2. To
compare the frameworks, each criterion is assigned a rating represented by a rating
symbol in table 6.2. The rating symbols are defined in table 6.2.

Rating Symbol Meaning

+ + The criteria fully applies.
+ The criteria mostly applies.
o The criteria partly applies.
- The criteria minimally applies.
- - The criteria does not apply at all.
? The criteria is not applicable or not evaluated.

Table 6.2: Framework rating symbols

Framework Features Community Support Simplicity OpenAPI Adapter

AWS Lambda Powertools o o + + o ?
Flask with awsgi - + + - - -
Django with Mangum + + + + - - - +
FastAPI with Mangum + + + + + +
Litestar with Mangum + + + + + +

Table 6.3: REST API Python framework comparison

Litestar with Mangum is chosen as the framework for the LonqAPI REST API. This
decision is due to the combination of simplicity and useful features, especially the native
OpenAPI specification generation. FastAPI offers similar characteristics but is mainly
developed, maintained and represented by one person, which can be a risk for the future.
Litestar is less popular, but it is based on an organization, has more maintainers, and is
already in a stable version, which makes it more reliable.

6.3 AWS State Machine Query Handling

This section describes the design decisions for the query execution and result handling
using AWS Step Functions state machines.

6.3.1 State Machine Design

AWS Step Functions state machines are used to execute the long-running queries, trans-
form the results if necessary, and store them in S3. The service, in general, is not specific
to a particular use case and can be used for different purposes. Therefore, the following
paragraphs describe the design decisions for the state machines in the context of the
LonqAPI.

Monolithic vs. single-purpose State Machines

As for the REST API request handling with AWS Lambda, the query execution can
be designed with a monolithic state machine or multiple state machines. The term
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monolithic state machine is not defined by AWS or other sources and refers in this thesis
to an AWS Step Functions state machine that executes all queries to all data sources
within the LonqAPI architecture.

The advantages of a monolithic state machine are the reduced infrastructure complexity
and deployment time. The state machine can be extended with additional states and
functionality without deploying additional infrastructure. Advantages for single pur-
pose state machines are the reduced complexity per state machine and the possibility
to define concrete steps with minimal IAM permissions without the need to consider
higher flexibility. However, the number of state machines, infrastructure code and com-
plexity, and deployment time can increase quickly. Therefor, the approach of multiple
generic state machines as a middle ground between monolithic and single-purpose state
machines is chosen. This way, the number of state machines is reduced, but permissions
and complexity are separated between the state machines.

Generic LonqAPI State Machine

A state machine for the LonqAPI is designed to be a generic interface to a single data
source without specific query logic. The data source can be a database, another API, or,
like in the case of the LonqAPI, Athena, with permissions to read specific S3 buckets. The
state machine offers input parameters to define the specific query and transformation
logic. This input is passed in as required by the service in JSON format [87], and so
is the output of each state. Large data cannot be passed between states, so it needs to
be stored in S3, and states pass references to the objects. These references are passed
consistently in the output of a state as a JSON object with the keys ResultBucket and
ResultKeys. A query state like an Athena query returns different outputs and needs
to be transformed to fit the consistent output. However, this is not possible for some
queries without further overhead, so the query output is returned in such cases to avoid
increased complexity and costs by billed computing resources.

Athena POMQuery State Machine

To integrate the Athena POM query described in section 4.2.3, a single state machine is
designed to run Athena queries on the S3 bucket containing the data. It has a query state
running the StartQueryExecution Athena API call as a synchronous job. The concrete
query is not defined in the state machine but passed as QueryString and QueryParameter
inputs. For the query, the UNLOAD command is used to store the results directly
in S3 to reduce runtime costs. This command does not return the object keys of the
result directly but with an S3 location containing a CSV file that includes these keys. An
example response to such a query is shown in listing A.5 in the appendix. As mentioned
in the previous paragraph, instead of a consistent output with the result keys, the query
output is returned in this case because the query command specifies the result location
in S3, and the Lambda function defining this query can list the result files directly.
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6.3.2 Data Transformation

Data retrieved from a data source can be transformed within the state machine. This
represents the Transformation step in the ETL process described in section 3.2.2. To
transform the data, a Lambda function is used as a state in the Athena POM query state
machine. A Lambda function is limited to 15 minutes of runtime and a maximum of
10240 MB memory [79]. This is enough for transforming the data of an Athena POM
query in chunks. For other data sources that need more time or memory, a different
service like AWS Fargate can be used. The input of such a transformation state includes
the output of the previous state, but depending on the state machine definition, it can
also include the original state machine input.

In the case of the Athena POM query, the data needs to be transformed to imperial
units if requested, as defined in user story 1 in section 4.3. Therefor, the transformation
function is integrated as an optional state only executed if the imperial query string
parameter is set to true. The Lambda then loads the data from S3 in chunks, transforms
it, and stores it in different S3 locations. The transformation uses the existing utility
function in the mdl_data_accessmodule. The output of the transformation state is the
consistent result output with the result bucket and keys mentioned in section 6.3.1.

6.3.3 Result Data

The data retrieved from a query within a state machine is stored in S3 and passed to
the next state, as described in section 6.3.1. Each query or transformation state stores
the data in a different S3 location. This fulfills the purpose of a staging area in an ETL
process, as mentioned in section 3.2.2. To reduce the number of S3 buckets and keep the
infrastructure simple, the system uses a single bucket for all result data and separates
the data with prefixes.

The Athena UNLOAD command supports different file formats like JSON, text, and
parquet. The parquet format is a columnar storage format optimized for performance
and compression [70]. Data analysis tools like Apache Spark [112] or libraries like
Pandas [73] can read parquet files directly. JSON is a human-readable format that is
a good choice for REST API response bodies, as mentioned in section 6.1.2. However,
compared to parquet, it is not optimized for performance and compression of large
data [113], so the parquet format is chosen as the default format for the query results.

6.4 Summary

This chapter presented design decisions for the LonqAPI architecture and implementa-
tion. Two REST API endpoints, their parameters and a uniform resource representation
are defined to create and poll long-running queries. Requests are handled with a mono-
lithic Lambda function using the Litestar framework. The query execution is designed
with a generic Step Functions state machine which stores the results in a single S3 bucket.
Optional result processing is integrated as a Lambda function execution state.

Chapter 6. Design Decisions 44



Simon Kleber Bachelor Thesis

Chapter 7

Implementation

This chapter describes the implementation of the LonqAPI prototype, which realizes
the architecture described in chapter 5 and the design decisions in chapter 6. First, the
overall project structure is described, followed by the implementation of the mdl-lonq
library as one of the subprojects. The integration process of new long-running queries
is defined based on this library. As an example, the Athena POM query and its result
processing is presented. Results of the implementation process are integrated into the
mdl-daas-history subproject, described in the following sections. The chapter ends with
the implementation of a general session management utility in Lambda functions used
by the LonqAPI prototype and a summary.

7.1 LonqAPI Monorepo Subprojects

The request dispatching in an AWS Lambda function and the query execution in a Step
Functions state machine are decoupled within the LonqAPI architecture described in
chapter 5. In the implementation, this decoupling is reflected by separating the REST
API and the state machine infrastructure in two subprojects in the monorepo, mdl-lonq
and mdl-daas-history. To follow the Data Layer convention, the project names start with
mdl-. The following paragraphs describe the two subprojects and their usage. Figure 7.1
shows a simplified package structure of the LonqAPI implementation with the two
subprojects as their base packages.

7.1.1 mdl-lonq Subproject

The mdl-lonq subproject serves as a library for other applications, including mdl-daas-
history. It contains all necessary infrastructure and logic code to help implement AWS
Step Functions state machines handling long-running queries. This includes a generic
state machine definition and Lambda function implementation to transform, process,
and store query results in an S3 bucket. The library aims to facilitate all steps in the
decoupled query execution process within a state machine, independent of the concrete
usage scenario, but keeping the flexibility to extend and customize the implementation. It
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Figure 7.1: The simplified LonqAPI implementation package structure

does not instantiate any infrastructure as AWS CDK stacks itself but provides constructs
to do so. It contains neither business logic nor application-specific code like API-specific
functionality like the query status storage in DynamoDB.

The goals of the mdl-lonq subproject library are:

• Enable but do not specify queries on data sources
• Enable chunked processing of results
• Enable but do not specify transformation steps
• Provide result data in source-agnostic format
• Keep flexibility to create new state machines with different data sources
• Keep flexibility to integrate new states for future functionality
• Allow easy and intuitive state machine instantiation
• Avoid code duplication

7.1.2 mdl-daas-history Subproject

The mdl-daas-history subproject implements the LonqAPI REST API as the prototype
of the DaaS history API in the BHS Machine Data Layer. The project defines and
instantiates infrastructure and includes request-handling logic in Lambda functions. It
uses the Litestar REST API framework, as evaluated in section 6.2.2, to implement the
REST API endpoints and themdl-lonq library to define custom state machines and result-
processing Lambda functions within a CDK stack. For consistency reasons, this CDK
stack is located outside the mdl-daas-history project folder in a separate infrastructure
monorepo subproject for the whole Data Layer called mdl-cdk-core. In the context of
this thesis, the infrastructure stack is described as part of the mdl-daas-history project,
ignoring the fact that it is not implemented in the same project folder.
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7.2 mdl-lonq Library Implementation

This section outlines the implementation of the mdl-lonq library introduced in sec-
tion 7.1.1. The library contains three main packages described in the following para-
graphs with their most important classes and functions.

7.2.1 State Machine CDK Constructs

One purpose of the mdl-lonq library is to facilitate the definition of state machines to
execute and process long-running queries. Therefore, it provides CDK constructs that
define generic and extendable state machines. A state machine can be instantiated
using the CDK StateMachine class. To define its states, the StateMachine class requires a
DefinitionBody object that contains the state machine structure. This definition can be
created from a Chainable object that represents the first state of a Chain of states. Such a
Chain can be extended by adding another Chain or a Chainable object. Each State class
implements the IChainable interface and can be used to start a Chain or extend an existing
one. A State can be a Task to call an AWS service or a third-party API. Other State types,
like Choice or Parallel, can control the state machine flow [114].

The mdl-lonq library provides Construct classes that use the chaining concept to define
state machines for long-running queries. The BaseLonqStateMachine is an abstract class
that defines the idea of a long-running query state machine. It separates the state
machine into three sections of the query handling process represented as Chain objects:
the pre-query chain, the query chain, and the post-query chain. The class implements
the Template Method design pattern [115, pp. 325-330], [116, pp. 257-270] to define the
state machine structure and allows subclasses to customize it by overriding its methods.
These methods include the creation of each Chain object for the three sections of the state
machine and one to set permissions for its execution role. Only the query chainmethod is
abstract and must be implemented by subclasses. This aims to facilitate the definition of
a state machine by bundling case-independent structure and functionality and providing
only necessary customization. Although the template method that defines the structure
is called build, this class does not follow the Builder design pattern [115, pp. 97-106], [116,
pp. 75-90] because no director class is used to construct the state machine. However, the
implementation is inspired by its idea to “separate the construction of a complex object
from its representation” [115, p. 97] to facilitate the creation of state machines. The
BaseLonqStateMachine class expects a BaseLonqStateMachineConfig object as a constructor
parameter that contains all necessary configuration parameters for the state machine
construction. This includes a S3 IBucket object and prefix string to define the S3 bucket
where query results are stored. The state machine has its own storage location in S3 and
can store results in multiple subfolders. The BaseLonqStateMachine class also defines the
S3 prefix for raw query results and grants appropriate read and write permissions to
the state machine execution role. This construct and its configuration class are shown
as a diagram in figure 7.2 and documented in listing A.6 in the appendix.

The BaseLonqStateMachine class is abstract and must be subclassed to implement the
query chain and optionally override the other chain methods. The ProcessedLonqStateMa-

Chapter 7. Implementation 47



Simon Kleber Bachelor Thesis

Figure 7.2: The abstract BaseLonqStateMachine construct and its configuration class

chine class is another abstract subclass of BaseLonqStateMachine that implements the
post-query chain to process query results in a Lambda function optionally. This Lambda
function can be passed in the configuration object to the constructor and is only executed
if the state machine execution input contains a Processor key. To store the processed
results in a separate S3 prefix, permissions are granted to the lambda function execution
role to write to this S3 location.

7.2.2 Generic Query Processor Lambda Handler

Another purpose of the mdl-lonq library is to facilitate the processing of query results.
Therefore, it provides a generic Lambda function handler that can be configured to
process query results in a state machine. The idea of this handler is to provide only
the data-specific functionality as a configuration object and keep the rest of the imple-
mentation generic. This is inspired by other library implementations like the AWS
Lambda Powertools APIGatewayRestResolver [102] or the MangumASGI adapter [106].
Both libraries offer a class that can be instantiated with configuration parameters or
a complex object. The class instance can then be called as the Lambda handler and
executes the application logic configured in the constructor. This concept is not used
within a class but is implemented in the create_handler function, simplified and docu-
mented in listing A.8 in the appendix, which returns a lambda handler function. As a
configuration parameter, this function expects a dictionary that defines how to process
the query results based on the lambda event. This input dictionary has the processor
name as the key and a Callable as the value to create the processor from the lambda
query event. This dictionary itself has similarities to the Factory Method pattern [115, pp.
107-116], [116, pp. 68-70] by returning a value based on a key, and the Callable value is
inspired by the Abstract Factory pattern [115, pp. 87-95], [116, pp. 70-72] to dynamically
create the processor object without knowing its concrete type. The Callable returns an
object that implements the abstract QueryProcessor class defined in the data_processing
package. Therefore, the lambda event must contain state machine context information
like the S3 result location and query inputs like the query ID and query state output.

The QueryProcessor class is an abstract class that defines the interface for query result
processors. It expects a LonqExtractionIterator object as a constructor parameter that
provides the query results in chunks. Within the template method [115, pp. 325-
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330], [116, pp. 257-270] process, theQueryProcessor class iterates over the query results and
calls themethods _transform_element and _persist_element for each element. Bothmethods
can be overridden by subclasses to customize the processing. The LonqExtractionIterator
class implements the Iterator pattern [115, pp. 257-271], [116, pp. 203-207] using Python’s
internal __iter__ and __next__ functions. It is also abstract and must be subclassed to be
instantiated.

In the package structure shown in figure 7.1, the Lambda handler creator function
is represented as the lambda_handler package, and query processors and iterators are
located in the data_processing package.

7.3 Long-running Query Implementation Process

The mdl-lonq library is designed to facilitate the implementation of long-running queries
in AWS Step Functions state machines. This section describes how the library can
be used to implement a new long-running query by following a process. The first
subsection describes the process in general, and the second subsection describes the
implementation of the Athena POM query state machine as an example.

7.3.1 Process Definition

A process is defined to implement a new long-running query using the mdl-lonq library
constructs and utilities. This process is documented in the flowchart figure A.2 in the
appendix and described in the following paragraphs. A simplified version of the process,
without branches, is shown in figure 7.3. Implementation results of this process can
extend the mdl-lonq library or be implemented in a separate project like the mdl-daas-
history subproject.

Figure 7.3: The simplified process of implementing a new long-running query usingmdl-lonq
library constructs and utilities

The first step of the process is to consider existing state machines and if one of them
can be used for the data source and query type. If not, a new state machine with
an appropriate query chain must be implemented. As described in section 6.3.1, the
state machine should not define the query but offer input parameters to configure it.
Therefore, theProcessedLonqStateMachine orBaseLonqStateMachine class can be subclassed.
If the query results do not need further processing, the state machine construct can
be instantiated and used as is. Otherwise, a compatible LonqExtractionIterator subclass
must be implemented if one does not exist yet. The same applies to the QueryProcessor
subclass. Both subclasses can be used to create a new Lambda handler or to extend an
existing one using the create_handler function. They must be passed within a dictionary
wrapped in a Callable to instantiate the desired processor at runtime. The Lambda
function with this handler can then be handed to the defined state machine constructor
and executed after the query chain.
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With the state machine design of the LonqAPI, the input to a state machine execution
defines the query and its parameters, as well as its processing by including the specific
processor to execute and its parameters. The processor Lambda function can then
instantiate the LonqExtractionIterator and QueryProcessor based on the input and process
the query results.

7.3.2 Athena POMQuery Implementation

To enable Athena queries, theAthenaLonqStateMachine class is implemented as a subclass
of ProcessedLonqStateMachine. It implements the abstract query chainmethod and returns
an AthenaStartQueryExecution task wrapped in a Chain object. A workgroup passed to
the Athena query task defines the default S3 output location. The defined task does not
specify the query but expects the QueryString and QueryParameter values in the state
machine execution input. To set necessary permissions, the AthenaLonqStateMachine
class overrides the _set_state_machine_permissionsmethod and adds IAM statements to
the state machine execution role. Since this class is not specific to the use case of the
POM query, it is located in the infrastructure package of the mdl-lonq library.

Results of a UNLOAD query are stored in a S3 bucket in parquet format. To iterate over
the generated files, the S3ParquetIterator is implemented as a subclass of the LonqExtrac-
tionIterator. It can be used with a list of keys or an S3 prefix to return the query results
in chunks. The read_parquet function in the s3 module from the AWS SDK for pandas
(awswrangler) [117] is used to read the parquet files from S3 and return the results as a
pandas.DataFrame object. The library function allows partial reading of a parquet file
divided into parts, which can be used by passing its chunked parameter to the S3Par-
quetIterator constructor. Like the AthenaLonqStateMachine class, the S3ParquetIterator
class is not specific to a use case and is located in the data_processing package of the
mdl-lonq library.

As the next step, the query-specific QueryProcessor subclass must be implemented. For
the Athena POM query, the PomDataImperialProcessor subclass enables the conversion
of metric POM values to imperial units. It expects a S3ParquetIterator object as a con-
structor parameter and overrides the _transform_elementmethod to integrate the existing
to_imperial utility function from the mdl_data_accessmodule. Results are again persisted
as parquet files in S3.

To integrate the query result processing into the state machine execution, a Lambda
function must be passed to AthenaLonqStateMachine. Therefore, the instantiation of the
S3ParquetIterator and PomDataImperialProcessor objects is wrapped in a Callable that is
passed to the create_handler function as a dictionary value. The dictionary key for the
processor is set to PomDataImperialProcessor and can be used as the Processor key in
the state machine execution input to trigger the processing after the query chain. This
handler creation is documented in listing A.9 in the appendix. The returned handler
function is then passed within a CDK IFunction object to the AthenaLonqStateMachine
constructor to create the state machine. The PomDataImperialProcessor and created
lambda handler are specific to the Athena POM query and, therefore, are located in the
lambda_handler package of the mdl-daas-history subproject.
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The resulting state machine can be used to execute Athena queries in general and is not
specific to a S3 bucket or query type. However, the POM query state machine instance
is only permitted to read from the POM data source S3 bucket and write to a defined
result S3 bucket and prefix. Figure 7.4 shows the state machine instance visualized
in the AWS Step Functions editor. The PomDataImperialProcessorwithin the processor
Lambda function is query-specific and can only be used to convert metric POM values to
imperial units. However, the dictionary passed to the Lambda handler creator function
can be extended to add other processors. The necessary processor can be selected by
passing the appropriate dictionary key in the state machine execution input.

Figure 7.4: The Athena POM query state machine shown in the AWS Step Functions editor

The previous paragraphs simplify the implementation in some parts to focus on the
essential aspects. For example, a DataframeQueryProcessor class is implemented that can
be used to process query results as pandas.DataFrame objects. This class is the parent of
the PomDataImperialProcessor class and implements the _persist_elementmethod to store
the results in S3 because this is not specific to POM data and can also be used for other
queries.

7.4 mdl-daas-history Project Implementation

This section describes the implementation of the mdl-daas-history subproject introduced
in section 7.1.2. To meet the requirements of the LonqAPI prototype, the project imple-
ments the infrastructure and logic using the mdl-lonq library and the Litestar REST API
framework. The implementation process in section 7.3 implements the Athena POM
query state machine construct and, therefore, is part of the mdl-daas-history subproject.
The following sections explain the infrastructure definition of the application within
one CDK stack and the implementation of the REST API Lambda function.
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7.4.1 DaaS History API Infrastructure Stack

All application infrastructure is defined within one CDK stack called DaasHistoryStack.
This follows the architecture shown in section 5.4 and design decisions in chapter 6.
Configured settings fit the requirements of the LonqAPI prototype but can be adjusted
to meet future requirements. The following paragraphs describe the essential parts of
the stack implementation.

Result S3 Bucket: The CDK stack defines a new S3 bucket to store the query results. It
is encrypted with an AWS Key Management Service (KMS) key created using existing
utilities in the Data Layer implementation. The bucket is configured to allow only
Secure Sockets Layer (SSL) encrypted connections and to block public access. Object
versioning is disabled because changes to query results are not expected and would
only increase storage costs. A lifecycle rule is defined to expire objects after 30 days to
avoid unnecessary storage but keep them available for enough time to retrieve them.

Request Status DynamoDB Table: The CDK stack instantiates a new DynamoDB
table to store the query request status information. The table has a partition key named
client_id and a sort key named query_id to identify a query. The client_id is added because
every query is associated with exactly one client and must be specified in LonqAPI
requests, as described in section 6.1.3. To expire and delete old query status entries,
the expiration_time field is set as the time to live attribute. It contains the expiration
timestamp as seconds since the Unix epoch [72, Sec. 4.16]. Like the result S3 bucket, the
DynamoDB table is encrypted using a new KMS key.

REST API and query result processor Lambda functions: Two Lambda functions are
defined. Both build their own Docker image using the DockerImageFunction class and a
Dockerfile based on the AWS Lambda Python 3.10 base image [118]. The first one is
the REST API handler called by API Gateway. Its implementation is described in sec-
tion 7.4.2. The function is configured with a 30-second timeout because the synchronous
requests should be processed quickly. To do so, 3000 MB of memory are allocated to
the function, which is more than necessary but should speed up the processing because
CPU power is allocated proportionally to the memory size [79]. Necessary information
like state machine Amazon Resource Names (ARNs) and the DynamoDB table name
are passed to the function as environment variables. The second Lambda function is
the query result processor called by the state machine if necessary. Its implementation
is described as an example of the implementation process of a long-running query in
section 7.3.2. For the LonqAPI prototype, this function iterates over the query results
and converts the metric POM values to imperial units. Therefore, it is configured with
the maximal timeout of 15 minutes and 4000 MB of memory, which experimentally is
enough for Athena POM query results in chunks generated by the UNLOAD command.
This processor function is defined to be extendable to implement other processing use
cases in the future. In the context of this thesis, the function is only used for converting
POM values to imperial units.

API Gateway: The REST API Lambda function is integrated into an API Gateway REST
API. Compared to an HTTP API, REST APIs offer more features like API keys and
caching [119]. The CDK LambdaRestApi class defines the API and integrate the Lambda
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function. The API is deployed to a stage representing the environment, which is dev for
the prototype.

Athena POM query state machine: The Athena POM query state machine construct is
implemented as described in section 7.3.2. The result S3 bucket and the query result
processor Lambda function are passed to its constructor as CDK IBucket and IFunction
objects. Also passed are references to the POM data source for the Athena query, like
the database and table name and the bucket to read from. The state machine construct
is then built and added to the CDK stack, which is documented in listing A.7 in the
appendix. The resulting state machine is shown in figure 7.4, visualized in the AWS Step
Functions editor. To handle the execution of the state machine, the REST API Lambda
function is granted permission to start and read the state machine execution.

7.4.2 REST API Lambda Function

The REST API Lambda function uses a Litestar application object and the Mangum
ASGI adapter to implement the REST API endpoints. The implementation is separated
into three main layers: the controller, service, and repository. This follows the three-
layer architecture described by Fowler [120, pp. 19-22]. The controller layer defines
the REST API endpoints and their request and response models. The service layer
implements all business logic and uses the repository layer to access data or external
services. Implemented classes and request handlers and their hierarchy within the
layers are shown in figure 7.5 and described in the following paragraphs.

Figure 7.5: The implemented REST API calsses and request handlers, and their hierarchy in
the layer architecture

The architecture is wrapped in a Litestar application object that is instantiated in the app
module in the root package of the mdl-daas-history subproject. Litestar’s dependency in-
jection functionality is used to inject the layer objects into each other. Therefore, provider
functions are implemented to instantiate the objects and register the dependencies in the
application object. The REST API endpoints are defined in the controller package within
the query and pom_data_querymodules. Each controller module defines a litestar.Router
with its endpoints, which are also registered in the Litestar application.
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The pom_data_querymodule in the controller layer contains the endpoint to create a new
Athena POM query, which is defined in section 6.1.3. This endpoint is implemented as
the create_pom_query function and documented in listing A.10 in the appendix. The path
and query parameters, as well as the service layer dependencies, are injected as parame-
ters to the function. The LonqPomDataQueryService allows to start an Athena POM query
with all necessary parameters. It returns a state machine execution ARN, and together
with a generated query ID, the query with the status RUNNING is stored in the Dy-
namoDB table using the LonqQueryService. For the expiration_time attribute, the current
timestamp with an offset of one day is used. The new LonqQuery entity is returned as
defined in section 6.1.3 in the response body with a Location header and the 201 Created
status code. The UNLOAD Athena query is defined in the LonqPomDataQueryRepository
and passed as QueryString to the state machine execution input. If the imperial query
parameter is set to true, the Processor key triggers the processing of the query results in
the state machine. Since the state machine’s output differs depending on whether the
query is processed or not, the output type is also saved in the DynamoDB table. This is
implemented in the LonqQueryRepository class and injected into the LonqQueryService
class.

The query status polling endpoint, described in section 6.1.3, is implemented as the
get_long_running_query function in the query module. To retrieve the current query
status, the LonqQueryResultServiceFacade implements the Facade design pattern [115, pp.
185-193], [116, pp. 123-132] to hide the complexity of updating the query status and
generating presigned S3 URLs. It uses the LonqQueryService to retrieve the persisted
query entity and the LonqPomDataQueryService to retrieve results from S3 if the output
was not processed. The status of the query is updated by getting the current state
machine execution status. If this status turns to SUCCEEDED, a presigned S3 URL is
generated for each result file and added to the query entity. The updated entity is then
returned in the response body.

Litestar’s internal exceptions are used to indicate errors in the controller layer and return
the appropriate HTTP status codes, like the ValidationException in the create_pom_query
handler. Litestar also validates and parses the client request variables based on the
defined types and returns a 400 (Bad Request) status code if the request is invalid.
To enhance the OpenAPI specification generated by the framework, the endpoints
are documented using optional description parameters and types. Like the request
parameters the responsemodels are also specified by Python types and Pydantic models,
and injected into the OpenAPI documentation.

7.5 Lambda Session Management

The AWS Lambda execution environment is reused for subsequent invocations. This
means that after an initial invocation, the environment with its global variables is kept
available for a certain time for further invocations. To reduce runtime and initialization
time, the best practice is to initialize SDK clients and database connections outside the
function handler [79]. Nevertheless, depending on the Lambda event, the function
handler might only need specific resources, and not all possible connections should be
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initialized. A solution is to initialize a session once needed and keep it for other invoca-
tions in the same execution environment. This is implemented in the SessionManager
class as a shared module in the Data Layer monorepo and shown in listing A.11 in the
appendix. The class is inspired by the Singleton pattern [115, pp. 127-134], [116, pp.
23-35] to provide simple access and reusability of an instance. However, it wraps not
only one but multiple types of singleton sessions. The sessions are stored in a dictionary
with the session type as the key and its object as the value. The single session objects
are accessible through property methods. The SessionManager can be initialized globally
in the application and used to access the session objects on demand. Throughout the
LonqAPI implementation, it is used to initialize and access boto3 Software Development
Kit (SDK) [121] clients and sessions for AWS services.

7.6 Summary

This chapter illustrated the implementation of the LonqAPI prototype and its two
subprojects in the Data Layer monorepo, mdl-lonq and mdl-daas-history. The mdl-lonq
subproject provides a library to facilitate the implementation of long-running queries
in AWS Step Functions state machines. It defines extendable state machine constructs
and a configurable query result processor Lambda handler. These library components
can be used within a defined development process to implement new long-running
queries. The implementation of the Athena POM query state machine and its result
processor Lambda function is an example of this process. Themdl-daas-history subproject
implements the LonqAPI prototype as a REST API using the created state machine
construct and Lambda handler. It defines the AWS infrastructure and implements the
two REST API endpoints for POM queries using the Litestar framework in a three-
layer architecture. To facilitate session management in AWS Lambda functions, a
SessionManager class is implemented as a utility and used throughout the LonqAPI
implementation.
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Chapter 8

Evaluation

This chapter aims to evaluate the LonqAPI prototype in terms of usability, efficiency, and
extensibility. The evaluation is based on the requirements and user stories in section 4.3
and the research questions and objectives in Chapter 1. It is divided into three sections
presenting parts of the evaluation, and the last section concludes. First, the usability and
performance of the REST API is evaluated. The second section focuses on the efficiency
of the long-running query processing in AWS Step Functions state machines. This is
followed by an evaluation of the extensibility of the prototype with the implementation
of a new query data source. The last section summarizes the evaluation results and
reviews the research questions and objectives.

The evaluation is carried out through manual tests and measurements. However,
automated tests are also integrated into the development process of the whole Data
Layer monorepo and cover the LonqAPI implementation as well. These consist of the
execution of unit tests and static code analysis. Unit tests are implemented for each
Python module and are executed by the pytest framework [122]. Static code analysis is
performed by Pylint [123] and Mypy [124] for type checking.

8.1 API Evaluation

This section evaluates the LonqAPI REST API from the user’s perspective. Its usability
is evaluated by a test client implementation, and a load test evaluates its performance.

8.1.1 Test Client Implementation

A test client is developed to evaluate the REST API usability. It is implemented as a
Python script using the requests library [125] to send HTTP requests to the API. Depend-
ing on how code is formatted and how lines are counted, the number of lines of code is
between 20 and 50, including imports and configuration parameters. The structure can
also be seen in figure 8.1, which shows the flowchart diagram of its implementation.

In general, a client has to implement three different requests: one to start a query, one
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to get the query status, and one to get the query results by the provided presigned
S3 URLs. However, only the first request has to be configured with path and query
parameters. The other two are retrieved from the responses. Two loops are used. The
first one implements the client polling for the query status until it is completed or failed.
The second loop iterates over the result S3 URLs and downloads the result files. Clients
need to be aware of failures, which is why the script can terminate if an unsuccessful
HTTP or query status code is returned.

Figure 8.1: The test client implementation flowchart diagram

The relatively simple implementation structure is not only specific to Python but can be
implemented in other popular programming languages, especially because libraries for
HTTP requests are available for most of them. Some tools and libraries are presented
in webpages like [48]. The passing of URLs in the responses reduces complexity and
request configuration. This is also shown by the low number of lines of code. The
client needs to handle different status codes and errors, which leads to more branching.
However, detailed error messages can reduce debugging effort on failures.

8.1.2 API Performance Evaluation

One requirement of BHS to the LonqAPI is to support a user load of up to 10000 requests
per minute, not including the initiation of long-running queries. Therefore, AWS API
Gateway and the request-handling Lambda function must handle this load. This is
evaluated by a load test using Apache JMeter [126].

The test is configured to send 11000 requests per minute as target throughput within
16 threads in one minute to the API query resource endpoint. In the path parameter,
the ID of an existing query is used to retrieve its status. Therefore, the test does not
start new queries but only retrieves the query status. The test also applies load to
the DynamoDB table used to store the query metadata. First, a request goes to API
Gateway and is then handled by the Lambda function implemented in Python using
the Litestar framework [111]. The Lambda function retrieves the query metadata from
the DynamoDB table and returns the query status as a JSON response. To simulate the
API in production, the API is called manually before the test to ensure that the initial
Lambda function cold start is not included.

As a result, 10179 requests are sent. All of them are successful and return a 200 HTTP
status code. The response times are summarized in figure 8.2. Average and median
response times are below 100 milliseconds. 99% of the requests are still answered within
256 milliseconds. The maximum response time is 1064 milliseconds. The AWS Lambda
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metrics show that the function has 16 concurrent executions at its peak caused by the 16
threads of the load test.

Figure 8.2: Response times of the API for 10179 requests to the query resource endpoint in
milliseconds

These results show that the API can handle the required 10000 requests per minute.
However, the test does not include the initiation of long-running queries, which can
increase the execution time of the Lambda function. The load test, in general, shows
good response time results. The maximum response time of more than one second is
still acceptable for the use case, especially because 99% of the requests are answered
within 256 milliseconds. It can be assumed that it is caused by a cold start of the Lambda
function for concurrent execution. This matches the operator guide Lambda execution
environments section in the AWS Lambda documentation [127], which states that cold
starts take under 100 milliseconds to over one second.

8.2 Query Execution Infrastructure Efficiency Evaluation

This section aims to evaluate the efficiency of the AWS infrastructure used by the
LonqAPI. It is divided into the inspection of the infrastructure execution time and costs
overhead caused by the LonqAPI. Both are based on the Athena POM query described
in section 4.2.3. In this context, overhead refers to the time and costs caused by the
LonqAPI, excluding the actual query execution in Athena.

8.2.1 Query Execution Time Overhead

To measure the time overhead from the request until the query results are available, the
client script from section 8.1.1 is used. Therefore, a minimal query is executed, which
only takes about one second to execute in Athena. The timestamp is saved before the
request is sent, and the remaining times are looked up in the corresponding AWS service
consoles. The processing time of the Lambda function within the state machine is highly
dependent on the query result size and number of result files. Also, the implementation
of the utilized to_imperial function, described in section 4.2.3, is not part of this thesis.
Therefore, the time of the query result processor Lambda function execution is not
considered in the overhead and is only mentioned in the following example.

Timestamps relative to the client request on a local machine are collected for an example
query execution and shown in table 8.1. Only relevant timestamps focused on the state
machine and query execution are included. The results show that it takes about half a
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second until the Athena query is submitted, which, in this case, completes relatively fast
after another 1.3 seconds due to the minimal query. However, it takes nearly a minute
until the state machine continues after the Athena query is completed. This delay is
neither part of the Athena execution nor an exception but also observed in other tests.
The other state transition times summed up are about half a second. The processor
Lambda function finishes relatively fast in about 174 milliseconds because the query
does not return any data, and no result files need to be processed. Altogether, the query
execution overhead in this example is 59.532 seconds. For this, the Athena query and the
processor Lambda function execution time are deducted from the total time of 60.985
seconds.

Timestamp Description Relative Timestamp (Seconds)

POST request 0.000
State machine started 0.139
Athena query submitted 0.515
Athena query completed 1.794
State machine continued 60.646
Processor Lambda function started 60.742
Processor Lambda function completed 60.916
State machine completed 60.985

Table 8.1: The Athen query execution timestamps of the LonqAPI infrastructure relative to
the POST request

These results can not be compared quantitatively since no other query execution infras-
tructure is implemented. However, using the Fargate query execution service approach
described in section 5.3.4, the query execution time overhead is expected to be lower.
This is because the Fargate task can execute the query synchronously, and the delay
within the state machine execution after the query completion is absent. This is a disad-
vantage of the implemented approach based on unexpected behavior of the AWS Step
Functions service in combination with the asynchronous Athena query execution and
should be considered in future development.

To retrieve the query results, the client must poll the query status endpoint until the
query is completed and then download the result files. This also causes a time overhead,
which depends on the client’s polling interval. In the best case, the additional overhead
is only the response times of the query status endpoint and the result S3 URLs. In the
worst case, the overhead is also increased by one polling period. This is a disadvantage
of the polling pattern described in section 3.1.2 and must be considered when using the
API in applications.

8.2.2 Query Cost Overhead

To evaluate the cost overhead of the query execution infrastructure, the AWS Pricing
Calculator [128] is used. The costs are highly dependent on the infrastructure usage,
and since no concrete numbers are available, only estimations can be made. Also, the
variety of possible configurations makes it difficult to compare the infrastructure costs
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with other approaches. Therefore, the following gives only an overview of possible
costs of LonqAPI infrastructure components and their alternatives.

REST API Costs

The REST API is implemented using an AWSAPI Gateway REST API and AWS Lambda.
Both are billed per request, and Lambda also per execution time and memory allocation.
The API Gateway is billed with 3.70 $ per million requests. The Lambda function
handling the requests is configured with 3 GB in the x86 architecture, and executions
are expected to take between 100 and 300 milliseconds on average. This is higher than
the measured average execution time in section 8.1.2 because the test only retrieves
existing queries and does not start new ones. Less frequent requests could also increase
the average execution time. With 300 milliseconds and 3 GB, the Lambda function is
billed with 14.85 $ per million requests.

An EC2 instance could be used as an alternative to both services. The cheapest instance
type with more than 3 GB of memory is the t4g.medium instance with 4 GB. As an
On-Demand instance, it is billed with 28.03 $ per month. This is equivalent to the costs
of more than 1.5 million requests per month with API Gateway and Lambda. Using a
savings plan or a spot instance can reduce EC2 costs.

The comparison shows that the API Gateway and Lambda approach is a sufficient and
cost-efficient solution for the prototype. However, costs must be considered in future
production use cases, and other approaches, like EC2 instances, can be evaluated.

Query Status DynamoDB Table Costs

The query status DynamoDB table stores the query metadata and uses the on-demand
standard table pricing model. A single entry, including result URLs, is expected to
be less than 2 KB. With this size, one GB can store about 500000 entries for a cost of
0.306 $ per month. These costs are expected to be less since the entries are configured
to expire after one day and are deleted automatically. One million reads and 100000
writes per month can be a realistic estimation for the number of requests mentioned
for REST API in the previous section. Reads are expected to be more frequent because
of the implemented polling pattern. This results in 0.30 $ per month. Therefore, the
costs of the DynamoDB table are expected to be negligible in this context and prove the
choice of the NoSQL database in terms of cost-efficiency.

Query Result S3 Bucket Costs

Results are stored in a S3 bucket and will be deleted automatically after 30 days. As
described in section 5.3.2, S3 is designed to handle large data volumes. Other AWS
services like RDS or DynamoDB handle other use cases. Therefore, and because no
production experience is available, costs can hardly be evaluated. However, the storage
of one TB per month is billed with 25.09 $. One million PUT, COPY, POST, or LIST
requests to S3 cost 5.40 $. Onemillion GET or SELECT requests cost 0.43 $. Inbound data
transfer is free, and outbound data transfer of one TB is billed with 92.16 $. These costs
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need to be considered when using the DaaS API in production. However, optimizations
like a lower lifetime of the results or limits for the executed queries can reduce the costs.

Query Execution Costs

The query execution is implemented using an AWS Step Functions state machine. This
service is billed by its number of executions and state transitions. The developed state
machine is configured with five state transitions, including the optional processor
Lambda state. 100000 executions with five state transitions are billed with 12.40 $ per
month.

This example calculation can be compared with the costs of the Fargate query execution
service described in section 5.3.4 as an alternative approach. Its costs depend on the
task execution time, which includes Athena’s query time. With an estimated average
execution time of one minute, which is the minimal priced time, 1 vCPU, and 3 GB of
memory, 100000 on-demand task executions are billed with 123.78 $.

This shows that the Step Functions state machine is more cost-efficient than a Fargate
task by a factor of 10 in this example calculation. Its advantage is that it does not use
computing resources while the query is executed, which reduces the cost overhead
compared to other approaches.

Query Result Processing Costs

A Lambda function optionally processes the results of the Athena POM query to convert
the data format from metric to imperial. It is integrated as a state in the Step Functions
state machine but can be replaced by other approaches. Therefore, its costs are evaluated
separately. The Lambda function execution time depends on the query result size and
number of result files. 1000 executions with the configured 3 GB of memory in the x86
architecture and an average execution time of one minute are billed with 3.00 $.

Alternatively, a Fargate task can be used to process the query results. 1000 AWS Fargate
on-demand one-minute task executions with 1 vCPU and 3 GB memory are billed with
1.24 $. The costs of both approaches change proportionally to the number of executions
and their average runtime, but a Fargate task has a minimum billed execution time of
one minute. Lambda is charged per millisecond without a minimum.

This shows that Lambda can be more cost-efficient for shorter executions than the
minimal one-minute Fargate billing time. Fargate is more cost-efficient for longer
executions. Since query results are expected to be large, Fargate can be a better choice
and can be evaluated to replace the Lambda function in future development, depending
on the concrete use case in production.

Costs Summary

Table 8.2 summarizes possible monthly costs per AWS service, volume, and action. The
numbers are based on one million requests, 100000 query executions, and 1000 result
processing executions. The query result size is assumed to be one TB per month in

Chapter 8. Evaluation 61



Simon Kleber Bachelor Thesis

storage. This shows that especially the S3 outbound data transfer costs are higher than
the others and need to be considered. However, these are just example calculations to
give an overview of the costs and the relevant services in this context.

AWS Service Volume and Action Costs per Month

API Gateway 1 million API requests 3.70 $
Lambda 1 million API request handler executions 14.85 $
DynamoDB 100000 query status entries of 2 KB 0.06 $
DynamoDB 1 million reads and 100000 writes 0.45 $
S3 1 TB query result storage 25.09 $
S3 1 million PUT, COPY, POST, or LIST requests 5.40 $
S3 1 million GET or SELECT requests 0.43 $
S3 1 TB outbound data transfer 92.16 $
Step Functions 100000 query state machine executions 12.40 $
Lambda 1000 result processing executions 3.00 $

Table 8.2: Exemplary monthly costs per AWS service, volume, and action for the LonqAPI
infrastructure

8.3 Extensibility Evaluation Example

This section evaluates the extensibility of the LonqAPI prototype by implementing
a new query data source. Therefore, DynamoDB was chosen because it is already
integrated into the BHS Data Layer and the implemented query status table can be used
as the concrete data source. The goal is to retrieve all long-running queries from the
DynamoDB table for the requesting client. This is a short query regarding execution
time and would not be considered long-running. However, for this evaluation, it is
sufficient to test the extensibility of the prototype.

To enable the integration of DynamoDB into the LonqAPI, the implementation is ex-
tended by the classes and functions listed in table 8.3. Not included is the registration of
additional dependencies in the Litestar application and the DynamoDBLonqStateMachine
class instantiation in the DaasHistoryStack class.

The DynamoDBLonqStateMachine is implemented as a new state machine construct class
to execute the DynamoDBQuery action [129]. Because state outputs are limited to 256 KB,
the results must be directly persisted outside the state machine. The synchronous Dy-
namoDB query does not support this by default. Therefore, theMapLonqStateMachine
is implemented and inherited by the DynamoDBLonqStateMachine to use theMap state
and its ResultWriter as documented in the AWS Step Functions developer guide under
Input and Output Processing in Step Functions [87]. With the query wrapped inside the
Map state, the output is directly written to S3 to avoid the 256 KB limit. The query
state is implemented as a CallAwsService state with appropriate parameters, including
the KeyConditionExpression. This state allows the query execution without consuming
computing resources. The query output is written to one manifest file that contains
S3 URLs of the actual query result files. Both are in the JSON format. The ResultWri-
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Class / Function Name Purpose

MapLonqStateMachine Generic usage of a Map state and its ResultWriter in a state
machine

DynamoDBLonqStateMachine Generic query state implementation for DynamoDB state ma-
chines

ResultWriterIterator Generic LonqExtractionIterator for chunked extraction of Map
state results

DynamoDBQueryProcessor Generic QueryProcessor to normalize DynamoDB query results
and write them as Parquet to S3

build_dynamodb_query_processor Creator function for the DynamoDBQueryProcessor instantia-
tion at Lambda function runtime

create_dynamodb_query Litestar request handler function to create the DynamoDB query
LonqDynamoDBQueryService Service layer class for business logic (none in this case)
LonqDynamoDBQueryRepository Repository layer class to start the state machine with the Dy-

namoDB query

Table 8.3: The classes and functions implemented to integrate DynamoDB into the LonqAPI

terIterator is implemented to read the manifest file and iterate over the result file data.
The DynamoDBQueryProcessor is implemented to normalize the data because the re-
sult items include the DynamoDB data types like S for a string or N for a number.
Therefore, an existing utility function is used from the Data Layer monorepo. This
processor class is appended to the configuration of the existing Lambda function to be
used by the name DynamodbQueryProcessor set in the state machine input. The concrete
query is implemented in the repository layer LonqDynamoDBQueryRepository class and
called by the LonqDynamoDBQueryService. This service layer class only passes the query
parameters to the repository since no business logic is necessary in this case. The cre-
ate_dynamodb_query function defines the request endpoint and is registered as a request
handler in the Litestar application.

Six new classes and several functions are implemented to integrate DynamoDB as a
query source into the LonqAPI. This is a relatively high number for a simple query.
However, the implementation is generic and can also be used for other data sources. The
REST API layer architecture allows easy integration, and Litestar provides a simple way
to register new request handlers and dependencies. Since the query resource endpoint is
used for all queries, only one new endpoint is implemented. The implemented template
method pattern in the processor and state machine classes, described in section 7.2,
facilitates the extensibility by reusing existing code and providing a simple structure.
Also, the easy extension of the processor Lambda function by expanding its configuration
is an advantage of the implemented architecture. However, although base classes are
used for the new state machine construct, the integration causes trial and error to pass
the correct inputs and outputs between the states. Especially the necessaryMap state
and its ResultWriter can be complicated.

This shows that new query sources can be integrated into the LonqAPI and the im-
plementation supports the extension, but effort is required depending on the concrete
scenario. An advantage is the generic library that can be extended during the develop-
ment process for reusability. These evaluation results are summarized in table 8.4.
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Pros Cons

Well-organized REST API layer architecture Complexity byMap state and its ResultWriter
Low boilerplate code due to Litestar framework State input/output passing trial and error
Endpoint reuse for all queries
Reusability of template method pattern
Easy extension of processor Lambda function
Reusability of generic library implementations

Table 8.4: Evaluation of the DynamoDB integration into the LonqAPI

8.4 Conclusion

The research objective of this thesis is to develop a consistent DaaS interface for long-
running queries on a Data Layer in the AWS Cloud. The challenge is to enable asyn-
chronous client-server communication using a suitable interface technology and to
process long-running queries and large data results decoupled from the interface. To
face this challenge, the LonqAPI as a DaaS interface in the Data Layer at BHS is devel-
oped as a prototype. It aims to provide a reusable and extensible framework concept
for similar scenarios in the AWS Cloud to achieve effective design and implementation
in terms of interface technology and infrastructure architecture.

The following paragraphs summarize the evaluation results and review the research
questions to answer if the research objective is achieved.

Research Question 1 (RQ1): Which technologies and architectures are available to
design and implement a DaaS interface providing data from long-running queries in
the AWS Cloud? Fundamentals to answer this research question are presented in the
state of the art chapter (3). It describes asynchronous communication and correlation
techniques, including client-server patterns based on conversation metadata. Also,
popular API technologies are characterized. Based on the requirements of the LonqAPI,
the REST API technology with the polling pattern is selected and embedded in an
architecture in the cloud-native Data Layer at BHS. The infrastructure uses AWS API
Gateway and Lambda to implement the REST API. As alternatives, the services EC2
and Fargate are introduced. Results are provided using the S3 presigned URL feature.
The REST API is designed with considerations about the Lambda request handling.
This resulted in a monolithic Lambda function with the Python Litestar framework.
The implementation defines infrastructure using AWS CDK and the request-handing
Lambda function in a three-layered architecture.

Regarding the implemented prototype, the REST API usability and performance evalu-
ations show good results with a simple client implementation and a low response time
to requests. Cold starts of the Lambda function are observed, which can increase the
response time of infrequent or concurrent requests. Cost overhead demonstrates the
API Gateway and Lambda approach as a sufficient and cost-efficient solution for the
prototype. The drawback of the polling pattern is the additional time overhead because
the client does not receive the results automatically.

Regarding the presented overview of technologies and architectures, this thesis only
summarizes the fundamentals and focuses on the REST API technology beginning with
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chapter 5. Only the polling pattern is designed, implemented, and evaluated. Therefore,
the answer to this research question is limited and can be extended by further research.

Research Question 2 (RQ2): How can long-running queries be efficiently processed
to provide data based on Athena queries for a DaaS interface using AWS Cloud
services? The LonqAPI prototype is designed and implemented to answer this research
question. Based on insights from research about ETL processes, the Athena POM
query is integrated within an UNLOAD statement into an AWS Step Functions state
machine decoupled from the DaaS interface. The transformation and loading steps are
implemented as a Lambda function, and results are stored in S3.

As described in section 5.3.4, Athena does not need to be integrated into a state ma-
chine for this question, but this allows to give answers to research question RQ3. The
evaluation shows that the state machine is a sufficient and cost-efficient solution. How-
ever, it causes an execution time overhead of about one minute in this implementation.
Depending on the use case, Lambda is no suitable choice for large query results, and
services like Fargate can be evaluated as an alternative. S3 is designed to handle big
data volumes, but optimization may be necessary in large-scale production use cases.

Altogether, the LonqAPI answers this research question for the case example at BHS,
but other requirements may lead to different solutions.

Research Question 3 (RQ3): How can the system be designed to be flexible and
extensible to further or changing long-running queries and data sources? Architecture,
design, and implementation of the LonqAPI are focused on answering this question.
Within the AWS architecture, a generic state machine definition allows the integration
of new query sources and processing steps. The REST API is designed to be flexible and
extensible using a monolithic Lambda, a three-layered Litestar application architecture,
and a generic query resource. The separation in library and application implementation
aims to increase reusability.

Next to Athena, DynamoDB is integrated as a new query source to evaluate the exten-
sibility. Results show that the architecture and implementation support the extension
without changing the system’s structure, but depending on the concrete scenario, effort
is required to define the state machine. However, the generic library allows the reuse of
development results.

This answers the research question for the system of the LonqAPI prototype. However, it
is still in a proof-of-concept state, and futurework is necessary to evaluate its extensibility
for other scenarios. The answer is also limited to the case example use case. It does not
include other system designs or requirements like joining query results.
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Chapter 9

Summary and Future Work

The following sections summarize the results of this thesis and provide an outlook on
future work.

9.1 Summary

The introduction (1) presented the necessity of data availability to benefit from data-
driven innovations and business decisions in the IIoT big data environment. To fill this
lack at BHS Corrugated, as the case example in this thesis, the LonqAPI was developed
as a DaaS interface prototype for long-running queries in its Machine Data Layer.

The research included asynchronous communication and API technologies to make
data accessible to clients. Based on BHS requirements, the architecture of the LonqAPI
as a REST API in the AWS cloud was constructed from necessary components and their
interactions. The implementation was further designed and described with a focus on
extensibility and usability.

The evaluation (8) showed that the LonqAPI is a suitable approach for the use case
at BHS. A generic library implementation enables access to data based on the Athena
POM query and facilitates the integration of new queries and data sources. With API
Gateway, Lambda, Step Functions state machines, S3, and DynamoDB, the LonqAPI
is a cost-efficient and flexible cloud-native prototype solution. The REST API polling
pattern proved its usability for client applications, and the architecture is scalable to
handle the required load.

The answers to this thesis’s research questions and objectives were evaluated and
summarized. However, the LonqAPI is still in a proof-of-concept state and requires
further evaluation and development to be used in production.

9.2 Future Work

Based on the results of this thesis, the following future work is suggested:
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Asmentioned in the evaluation (8), costs and performance are hard to predict and should
be monitored to gain better insights. Therefore, the LonqAPI should be evaluated in
a production environment. New use cases and requirements can be identified and
implemented to find potential improvements and increase its generic usability.

Cloud computing poses challenges for security, as presented by Pakmehr et al. [8], and
must be considered for the LonqAPI in production. This thesis does not focus on security
aspects, and further research must be conducted to ensure a secure and reliable DaaS
interface.

The implemented polling pattern for asynchronous communication has the drawback
that the client does not receive results immediately but has to poll for it. This can be
improved by extending the API and its underlying infrastructure to support the callback
pattern described in section 3.1.2.

Beginningwith architectural decisions in chapter 5, the LonqAPIwas designed as a REST
API. However, GraphQL is a promising alternative that can be evaluated and compared
to it. Especially its subscription feature could benefit the LonqAPI with asynchronous
communication at transport level. Patterns based on conversation metadata can still be
applied to GraphQL to increase client usability.

The query execution and its processing are crucial parts of the LonqAPI but are limited
to the relatively simple requirements of the case example for this thesis. However, the
developed concept provides the potential to integrate more advanced functionality
within the query execution and processing AWS Step Functions state machine. This
can include the combination of multiple queries, data sources, and other services, like
machine learning, to gain more value from data. Focused on the long-running query
execution, the LonqAPI does not support result caching. This can be implemented to
reduce costs and improve performance.
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Appendix A

LonqAPI

Listing A.1: Athena POM Query Statement

1 SELECT area_id ,
2 pom_id ,
3 timestamp_epoch ,
4 timestamp_utc ,
5 coalesce(
6 string_value ,
7 cast(boolean_value as varchar),
8 cast(number_value as varchar)
9 ) as value
10 FROM plant_pom
11 WHERE pom_id IN ( :pom_ids_param )
12 AND to_unixtime(
13 from_iso8601_timestamp(
14 format('%s-%s-%sT%s:00', year, month, day, hour))
15 ) BETWEEN :from_epoch_seconds
16 AND :to_epoch_seconds
17 AND timestamp_epoch >= :from_epoch
18 AND timestamp_epoch <= :to_epoch
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Listing A.2: Data access function header to convert metric POM values to imperial units

1 def to_imperial(
2 df: pd.DataFrame ,
3 col_name: str = 'value',
4 transformed_col_name: str = 'value',
5 pom_config_table_name: Optional[str] = None ,
6 session: Optional[boto3.Session] = None ,
7 ) -> None:
8 '''
9 Transform a column of a DataFrame from metric to imperial.
10

11 Args:
12 df (pd.DataFrame): The DataFrame to transform.
13 pom_config_table_name (Optional[str]): The name of the

DynamoDB table.
14 If None, take parameter from aws parameter store.
15 Defaults to None.
16 col_name (str, optional): The column name. Defaults to

'value'.
17 transformed_col_name (str, optional):
18 The name of the column containing the transformed

value.
19 Defaults to 'value'.
20 session (Optional[boto3.Session], optional):
21 The boto3 session to use. Defaults default session.
22 '''
23 ...
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Listing A.3: Example JSON representation of a long-running query resource

1 {
2 "clientId": "123e4567 -e89b -12d3-a456 -426614174000",
3 "queryId": "321e7654 -e98b -21d3-b654 -426614174123",
4 "status": "RUNNING",
5 "resultUrls": [],
6 "creationTime": "2024-01-01T12:30:00",
7 "expirationTime": "2024-01-02T21:30:00",
8 "createQueryUrl": "https://lonq -api-example.com/daas -history/

long -running -queries/123e4567 -e89b -12d3-a456 -426614174000/
process -data/areas/765e4321 -e98b -21d3-b654 -426614174123/
point -of-measurement -query?startTime =1701385200000&endTime
=1701400000000&pomIds=0e62e89a -9af7 -4762-81f5-d6d2390edfff
&imperial=False",

9 "queryUrl": "https://lonq -api-example.com/daas -history/long -
running -queries/123e4567 -e89b -12d3-a456 -426614174000/321
e7654 -e98b -21d3-b654 -426614174123"

10 }
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Listing A.4: Example idea of the usage of a REST API framework in an AWS Lambda
function for the LonqAPI

1 def foo_handler(path_param , query_string_param , body):
2 result = do_something(
3 path_param ,
4 query_string_param ,
5 body
6 )
7

8 return {
9 "status_code": 200,
10 "body": result
11 }
12

13 app = FrameworkApp()
14 app.add_route(
15 "/foo/{path_param}",
16 foo_handler ,
17 methods=["GET"]
18 )
19

20 def lambda_handler(event , context) -> dict:
21 return app.resolve(event , context)
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Listing A.5: Example Athena query response JSON of an UNLOAD POM data query

1 {
2 "QueryExecution": {
3 "EngineVersion": {
4 "EffectiveEngineVersion": "Athena engine version 3",
5 "SelectedEngineVersion": "Athena engine version 3"
6 },
7 "Query": "UNLOAD ( SELECT area_id ,pom_id ,timestamp_epoch ,

timestamp_utc , coalesce(string_value , cast(boolean_value
as varchar), cast(number_value as varchar)) as value

FROM plant_pom WHERE area_id = ? AND pom_id IN ( '
b2dfc749 -acd5 -4c19 -9766-af4a4d84b91f ' ) AND to_unixtime(
from_iso8601_timestamp( format('%s-%s-%sT%s:00', year ,

month , day, hour))) BETWEEN ? AND ? AND timestamp_epoch
>= ? AND timestamp_epoch <= ? )TO 's3://example -mdl-daas
-history -lonq -bucket/daasHistoryAthenaPomData/raw/822
aa578 -a77c -4992-9d6a -0b192fcbfdf2/' WITH (format='
PARQUET ', compression='None ')",

8 "QueryExecutionContext": {
9 "Database": "machine_data_layer_dev"
10 },
11 "QueryExecutionId": "13b8359b -d260 -46ef-9573-df82a1403fe9",
12 "ResultConfiguration": {
13 "EncryptionConfiguration": {
14 "EncryptionOption": "SSE_S3"
15 },
16 "OutputLocation": "s3://example -mdl-daas -history -lonq -

bucket/daasHistoryAthenaPomData/raw/13b8359b -d260 -46ef
-9573-df82a1403fe9"

17 },
18 "ResultReuseConfiguration": {
19 "ResultReuseByAgeConfiguration": {
20 "Enabled": false
21 }
22 },
23 "StatementType": "DML",
24 "Statistics": {
25 "DataManifestLocation": "s3://example -mdl-daas -history -

lonq -bucket/daasHistoryAthenaPomData/raw/13b8359b -d260
-46ef-9573-df82a1403fe9 -manifest.csv",

26 "DataScannedInBytes": 0,
27 "EngineExecutionTimeInMillis": 1134,
28 "QueryPlanningTimeInMillis": 551,
29 "QueryQueueTimeInMillis": 48,
30 "ResultReuseInformation": {
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31 "ReusedPreviousResult": false
32 },
33 "ServicePreProcessingTimeInMillis": 79,
34 "ServiceProcessingTimeInMillis": 24,
35 "TotalExecutionTimeInMillis": 1285
36 },
37 "Status": {
38 "CompletionDateTime": 1703341557963,
39 "State": "SUCCEEDED",
40 "SubmissionDateTime": 1703341556678
41 },
42 "SubstatementType": "UNLOAD",
43 "WorkGroup": "daasHistoryAthenaPomDataLonqAthenaWorkGroup"
44 }
45 }
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Listing A.6: The BaseLonqStateMachine and its configuration class

1 @dataclass
2 class BaseLonqStateMachineConfig:
3 prefix_id: str
4 bucket: aws_s3.IBucket
5

6

7 class BaseLonqStateMachine(constructs.Construct):
8 '''
9 Base class for lonq state machines.
10 '''
11

12 def __init__(
13 self ,
14 scope: constructs.Construct ,
15 config: BaseLonqStateMachineConfig ,
16 ):
17 super().__init__(scope , f'{config.prefix_id}

LonqStateMachine')
18 self.state_machine: Optional[sfn.StateMachine] = None
19 self.config = config
20 self.id = f'{config.prefix_id}LonqStateMachine'
21

22 def build(self) -> sfn.StateMachine:
23 query_chain = self._build_query_chain()
24

25 first_state = query_chain.start_state
26 if pre_query_chain := self._build_pre_query_chain():
27 first_state = pre_query_chain.start_state
28 pre_query_chain.next(query_chain)
29

30 if post_query_chain := self._build_post_query_chain():
31 query_chain.next(post_query_chain).next(
32 sfn.Succeed(self , 'Success')
33 )
34

35 self.state_machine = sfn.StateMachine(
36 self ,
37 self.id,
38 state_machine_name=self.id,
39 definition_body=sfn.DefinitionBody.from_chainable(

first_state),
40 )
41

42 self._set_state_machine_permissions(self.state_machine)
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43

44 return self.state_machine
45

46 @abstractmethod
47 def _build_query_chain(self) -> sfn.Chain:
48 pass
49

50 def _build_pre_query_chain(self) -> Optional[sfn.Chain]:
51 '''
52 Override this method to add a chain of states that

should be executed before the query.
53 '''
54 return None
55

56 def _build_post_query_chain(self) -> Optional[sfn.Chain]:
57 '''
58 Override this method to add a chain of states that

should be executed after the query.
59 '''
60 return None
61

62 def _set_state_machine_permissions(
63 self , state_machine: sfn.StateMachine
64 ) -> None:
65 self.config.bucket.grant_read_write(
66 state_machine ,
67 f'{raw_result_bucket_prefix(self.config.prefix_id)

}/*',
68 )
69 if self.config.bucket.encryption_key:
70 self.config.bucket.encryption_key.

grant_encrypt_decrypt(
71 state_machine ,
72 )
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Listing A.7: The POM state machine definition within the DaaS history API CDK stack

1 self.pom_state_machine = lonq_athena.AthenaLonqStateMachine(
2 self ,
3 lonq_athena.AthenaLonqStateMachineConfig(
4 prefix_id='daasHistoryAthenaPomData',
5 bucket=lonq_bucket ,
6 processor_lambda=query_processor_lambda ,
7 readable_s3_bucket=persistence_stack.processed_poms.

bucket ,
8 database_name=persistence_stack.glue_database.

database_name ,
9 table_names=['plant_pom'],
10 ),
11 ).build()
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Listing A.8: The simplified query processor Lambda handler creator function and its con-
figuration classes

1 class BaseProcessorEvent(TypedDict):
2 '''
3 Base input to build a lonq processor.
4 '''
5 QueryId: str
6 Processor: str
7 ProcessorConfig: dict[str, Any]
8 Result: dict[str, Any]
9

10

11 class LonqProcessorOutput(TypedDict):
12 ResultBucket: str
13 ResultKeys: list[str]
14

15

16 ProcessorCreator = Callable[
17 [BaseProcessorEvent], query_processor.QueryProcessor[Any]
18 ]
19

20

21 def create_handler(
22 processor_creator: dict[str, ProcessorCreator]
23 ) -> Callable[[dict[str, Any], LambdaContext],

LonqProcessorOutput]:
24 def handler(
25 event: dict[str, Any], context: LambdaContext
26 ) -> LonqProcessorOutput:
27

28 # Check if event contains a valid lonq query output.
29 # Extract a BaseProcessorEvent as processor_event.
30 # Extract result bucket and prefix as lonq_context.
31 # ...
32

33 processor: query_processor.QueryProcessor[Any]
34 processor = processor_creator[query['Processor']](

processor_event)
35

36 return LonqProcessorOutput(
37 ResultBucket=lonq_context['ResultBucket'],
38 ResultKeys=processor.process(
39 bucket=lonq_context['ResultBucket'],
40 prefix=lonq_context['ResultKeyPrefix'],
41 query_id=query['QueryId'],
42 ),
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43 )
44

45 return handler
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Listing A.9: The usage of the query processor Lambda handler creator function for the POM
data imperial conversion processor

1 def build_pom_data_imperial_processor(
2 event: query_processor_handler.BaseProcessorEvent ,
3 ) -> pom_data.PomDataImperialProcessor:
4 '''
5 Build a lonq query_processor that transforms pom data

values to imperial units.
6 '''
7 processor_config = event['ProcessorConfig']
8 if 'Bucket' not in processor_config:
9 raise ValueError('Bucket not specified in processor 

config')
10 elif 'Keys' not in processor_config and 'Prefix' not in

processor_config:
11 raise ValueError('Keys or Prefix not specified in 

processor config')
12

13 return pom_data.PomDataImperialProcessor(
14 extraction_iterator.S3ParquetIterator(
15 session=session_manager.boto3_session ,
16 bucket=processor_config['Bucket'],
17 keys=processor_config.get('Keys', None),
18 prefix=processor_config.get('Prefix', None),
19 chunked=processor_config.get('Chunked', False),
20 ),
21 session_manager ,
22 pom_config_table_name=os.environ['POM_CONFIG_TABLE'],
23 )
24

25

26 handler = query_processor_handler.create_handler(
27 processor_creator={
28 'PomDataImperialProcessor':

build_pom_data_imperial_processor ,
29 }
30 )

Chapter A. LonqAPI 90



Simon Kleber Bachelor Thesis

Figure A.2: The process of implementing a new long-running query using mdl-lonq library
constructs and utilities
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Listing A.10: The Litestar REST API request handler and router for creating a new POM
data query

1 @litestar.post(
2 '{client_id:uuid}/areas/{area_id:uuid}/point -of-measurement

-values',
3 sync_to_thread=False ,
4 summary='Create a query for point -of-measurement values in 

a given interval for a given area and pom ids.',
5 status_code=status_codes.HTTP_202_ACCEPTED ,
6 return_dto=query.ExtendedLonqQueryDto ,
7 response_headers=[
8 datastructures.ResponseHeader(
9 name='Location',
10 description='The location of the created query.',
11 required=True ,
12 documentation_only=True ,
13 )
14 ],
15 )
16 def create_pom_query(
17 client_id: Annotated[uuid.UUID , parameter.ClientId],
18 area_id: Annotated[uuid.UUID , parameter.AreaId],
19 pom_ids: Annotated[list[uuid.UUID], parameter.PomIds],
20 start_time_epoch: Annotated[int, parameter.StartTimeEpoch],
21 end_time_epoch: Annotated[int, parameter.EndTimeEpoch],
22 imperial: Annotated[
23 bool,
24 params.Parameter(
25 bool,
26 description='Whether to transform the values to 

imperial units.',
27 title='Imperial',
28 default=False ,
29 ),
30 ],
31 lonq_query_service: lonq_query_management.LonqQueryService ,
32 pom_data_query_service: pom_data_query.

LonqPomDataQueryService ,
33 request: litestar.Request[Any, Any, Any],
34 ) -> litestar.Response[query.ExtendedLonqQuery]:
35 if start_time_epoch >= end_time_epoch:
36 raise exceptions.ValidationException(
37 detail='The start time must be before the end time.

',
38 )
39
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40 query_id = uuid.uuid4()
41 execution_arn , output_type = pom_data_query_service.

start_pom_query(
42 query_id=query_id ,
43 area_id=area_id ,
44 pom_ids=pom_ids ,
45 start_time_epoch=start_time_epoch ,
46 end_time_epoch=end_time_epoch ,
47 imperial=imperial ,
48 )
49

50 created_query = lonq_query_service.create_query(
51 query_id=query_id ,
52 client_id=client_id ,
53 execution_arn=execution_arn ,
54 output_type=output_type ,
55 )
56

57 return litestar.Response(
58 headers={'Location': query.get_query_path(client_id ,

query_id)},
59 content=query.create_extended_lonq_query(created_query ,

request),
60 )
61

62

63 pom_data_query_router = litestar.Router(
64 path='/long -running -queries/process -data/',
65 route_handlers=[create_pom_query],
66 tags=['Long Running Queries', 'Process Data', 'Point of 

Measurement'],
67 )
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Listing A.11: The shortened manager class to initialize and hold sessions in AWS Lambda
functions

1 class SessionManager:
2 '''
3 Wrapper class for managing instances of clients and

sessions.
4 Enables to avoid initializations for reused lambda

environments , but for this the manger must be
initialized at global scope of the lambda handler.

5 To avoid unnecessary initializations , properties should be
accessed only where needed.

6 '''
7

8 def __init__(self , boto3_session: Optional[boto3.Session] =
None) -> None:

9 self._initialized: dict[Any, object] = {}
10 if boto3_session is not None:
11 self._initialized[boto3.Session] = boto3_session
12

13 @property
14 def boto3_session(self) -> boto3.Session:
15 return cast(
16 boto3.Session ,
17 self._initialized.setdefault(
18 boto3.Session ,
19 boto3._get_default_session(),
20 ),
21 )
22

23 @property
24 def s3_client(self) -> S3Client:
25 return cast(
26 S3Client ,
27 self._initialized.setdefault(
28 S3Client ,
29 self.boto3_session.client('s3'),
30 ),
31 )
32

33 .
34 .
35 .

Chapter A. LonqAPI 94


	Introduction and Context
	Research Questions
	Research Objective
	Research Concept

	Fundamentals
	Big Data
	Industrial Internet of Things
	Cloud Computing
	Service Models
	Cloud-native Concepts
	Amazon Web Services

	Data as a Service
	Web Service APIs
	Long-running Queries

	State of the Art
	Asynchronous Communication
	Asynchronous Communication Correlation
	Client-Server Asynchronous Communication Patterns

	Query Request Processing
	Decoupled Invocation Handling
	Query Processing
	Large Query Result Handling

	API Technologies
	REST
	WebSocket
	GraphQL
	gRPC


	Case Example
	Introduction to BHS Corrugated
	Relevance of Big Data at BHS Corrugated
	Relevance of IIoT at BHS Corrugated

	Data Layer at BHS Corrugated
	Architecture
	Implementation
	Relevant Queries and Data Formats

	Requirements
	Functional Requirements
	Non-Functional Requirements


	LonqAPI Architecture
	Architectural Decisions
	API Technology
	Asynchronous Communication Pattern for REST

	Architecture Components Overview
	AWS Service Evaluation
	REST API Service
	Query Result Storage Service
	Query Status Storage Service
	Query Execution Service

	Architecture Overview

	Design Decisions
	REST API Design
	REST Polling Pattern
	RESTful API Design Practices
	LonqAPI REST Endpoints

	AWS Lambda Request Handling
	Monolithic vs. single-purpose Lambda Function
	REST API Python Framework

	AWS State Machine Query Handling
	State Machine Design
	Data Transformation
	Result Data

	Summary

	Implementation
	LonqAPI Monorepo Subprojects
	mdl-lonq Subproject
	mdl-daas-history Subproject

	mdl-lonq Library Implementation
	State Machine CDK Constructs
	Generic Query Processor Lambda Handler

	Long-running Query Implementation Process
	Process Definition
	Athena POM Query Implementation

	mdl-daas-history Project Implementation
	DaaS History API Infrastructure Stack
	REST API Lambda Function

	Lambda Session Management
	Summary

	Evaluation
	API Evaluation
	Test Client Implementation
	API Performance Evaluation

	Query Execution Infrastructure Efficiency Evaluation
	Query Execution Time Overhead
	Query Cost Overhead

	Extensibility Evaluation Example
	Conclusion

	Summary and Future Work
	Summary
	Future Work

	Bibliography
	List of Figures
	List of Tables
	LonqAPI

